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Abstract

In an effort to reduce pollution from the electricity sector, governments are heavily subsi-
dizing renewables. The subsidies, however, are not being used in isolation. Instead, they are
often provided in regions where certain pollutants are regulated by cap-and-trade programs.
I demonstrate that, when combined with a cap-and-trade program, renewable subsidies can
cause an undesirable outcome – they can increase emissions of unregulated pollutants. Fo-
cusing on the region regulated by the Clean Air Interstate Rule, I show that, if the EPA sets a
binding cap on NOX , expanding renewable capacity not only offsets zero tons of NOX , it will
increase SO2 emissions.
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The electricity sector is not only the largest source of carbon dioxide (CO2), it is also a major

contributor of a variety of regional pollutants including sulfur dioxide (SO2) and nitrogen oxides

(NOX ). Motivated largely by a desire to reduce the flow of these pollutants, governments have im-

plemented an array of policies – e.g., tax credits, feed-in-tariffs, and renewable portfolio standards

– designed to increase the supply of electricity from clean, renewable energy sources. In terms of

spurring growth in renewable generation, these policies are clearly succeeding.1 In the U.S., for

example, production from wind turbines has grown at an average annual rate of 30% since 2001 –

increasing from less than 7,000 gigawatt-hours (GWh) during 2001 to over 180,000 GWh in 2014.

In contrast, production from conventional fossil fuel sources grew by less than 0.3% per year over

the same period. In this paper, I explore whether these increases in renewable generation will in

fact reduce the amount of pollution emitted by the electricity sector.

To determine how renewable electricity affects pollution, it is important to note that our efforts

to expand renewable generation are not being used in isolation. In particular, it is now the norm

for governments to subsidize renewables in regions where certain pollutants are already regulated.

For example, in the eastern U.S. – the region studied in this paper – the Environmental Protection

Agency (EPA) uses a cap-and-trade program to regulate the amount of NOX emitted by power

plants. At the same time, federal tax credits and state-level renewable portfolio standards are in-

creasing renewable capacity throughout the region.2 Previous work shows that, once a pollutant

is subject to a binding cap, adding renewable output will not affect the aggregate emissions of

the capped pollutant (Sijm (2005), Pethig and Wittlich (2009), Böhringer and Rosendahl (2010),

Fischer and Preonas (2010)). However, an open question remains – how are the emissions of the

other pollutants, the majority of which are unregulated, affected by renewables? Contributing to

the existing literature, this paper examines how renewables interact with market-based environ-

mental regulations to affect the emissions of regulated and unregulated pollutants. Focusing on

the electricity sector in the eastern U.S., I show that if the EPA sets a binding cap on NOX , ex-

1For studies exploring the impacts of the various renewable policies on renewable investment, see Bird et al. (2005),
Yin and Powers (2010), and Hitaj (2013).

2Similarly, in markets with CO2 cap-and-trade programs (i.e., the European Union, California, the northeastern
RGGI states), renewables benefit from generous government support.
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panding renewable capacity will cause an undesirable outcome – it will increase the emissions of

unregulated pollutants.

To demonstrate how renewables can increase pollution, I first present a simple analytical model

of an electricity market that emits multiple pollutants. Focusing on the case where the policymaker

can only regulate a single pollutant, I show that, if a cap-and-trade program is being used, in-

creasing renewable output will impact emissions through two distinct channels. First, holding the

pollution permit price constant, an increase in renewable output reduces the required production

from non-renewable sources. If any fossil fuel output is offset by this ‘scale effect’, the emissions

of each pollutant will fall. However, by reducing emissions of the capped pollutant, demand for

pollution permits will also fall. The result will be a decline in the permit price which causes an

additional ‘composition effect’ – a redistribution of output from non-renewable sources. While

previous work shows that the scale and composition effects exactly offset to leave the emissions of

the regulated pollutant unchanged (Böhringer and Rosendahl (2010), Fischer and Preonas (2010)),

I show this need not be the case for any unregulated pollutants. In particular, the composition effect

can dominate, increasing the emissions of unregulated pollutants.

To explore whether this unintended increase in unregulated pollution will occur in practice, I

predict how adding new wind turbines and solar panels in the eastern U.S. will interact with the

EPA’s NOX cap-and-trade program. Using data on the hourly output and emissions from power

plants in the region, I separately quantify how the resulting scale and composition effects will

impact unregulated emissions of CO2 and SO2. Building on the empirical strategy employed in

several recent studies (Callaway and Fowlie (2009), Siler-Evans, Azevedo and Morgan (2012),

Carson and Novan (2013), Graff Zivin, Kotchen and Mansur (2014), Jacobsen (2014)), I first

estimate the scale effect the increase in renewable output will cause by identifying how pollution

responds to an equal reduction in non-renewable generation. My estimates reveal that the scale

effect – i.e., the reduction in non-renewable output, holding NOX permit prices constant – will lead

to significant reductions in the emissions of each pollutant.

However, with a binding cap-and-trade program in place, the NOX reductions caused by the

2



scale effect will not equal the net change in NOX . Instead, the permit price will decline until the

net change in NOX is ultimately zero. To determine how the decrease in the permit price will

affect the unregulated pollutants, I examine how generation from fossil fuel power plants responds

to an abrupt, policy-induced change in the NOX permit price. I find evidence that a permit price

decrease will cause a harmful composition effect. Specifically, there will be a shift away from

relatively clean, natural gas generation towards dirtier, coal-fired output that negates much of the

scale reduction in unregulated pollution. In particular, I show that, once the composition effect is

taken into consideration, renewable electricity offsets substantially less CO2 than was previously

thought. Moreover, the renewable expansions will increase the amount of SO2 emitted.

These findings contribute to a large literature examining the relative efficiency of various com-

binations of environmental policies. In the presence of a single, unpriced pollutant, economists

have consistently argued in favor of using a single policy that internalizes the external cost of the

pollutant – i.e., an emission tax or a cap-and-trade program (Pigou (1920), Dales (1968), Mont-

gomery (1972), Baumol and Oates (1988)).3 Once the cost of emitting the pollutant has been

internalized, using additional policy instruments – such as renewable subsidies – has been shown

to result in efficiency losses.4 In practice, however, power plants emit more than one pollutant.

Moreover, governments have only managed to impose prices on, at most, a small subset of the

many pollutants being emitted. In contrast, policymakers have successfully implemented countless

subsidies targeted at specific channels of abatement (e.g., renewable electricity, energy efficiency).

The general belief is that, by reducing emissions, these subsidies act as imperfect substitutes for

the missing prices on pollutants. However, this paper demonstrates that, when combined with a

binding cap-and-trade program, subsidies for specific channels of abatement are very poor substi-

tutes for the missing emissions prices. In settings where we are unable to regulate each pollutant,

my results suggest that large efficiency gains can be achieved by combining renewable subsidies

3In contrast, in situations where there are additional market failures (e.g. knowledge spillovers), combining renew-
able subsidies and pollution prices can achieve the lowest cost emissions reductions (Jaffe, Newell and Stavins (2005),
Bennear and Stavins (2007), Fischer and Newell (2008)).

4For example, see Sorrell and Sijm (2003), Palmer and Burtraw (2005), Sijm (2005), Fischer and Newell (2008),
Goulder and Parry (2008), Pethig and Wittlich (2009), Böhringer and Rosendahl (2010), Fischer and Preonas (2010),
and Levinson (2012).
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with emissions taxes – as opposed to combining subsidies with emission caps.

The remainder of this paper proceeds as follows. In Section I, I analytically examine the

impact of renewable generation on regulated and unregulated pollutants. Section II describes the

EPA’s NOX cap-and-trade program and the data I use to examine the market. Section III presents

estimates of the scale effect of renewable generation on pollution. Section IV presents estimates of

the composition effect and the resulting net changes in pollution. In addition, Section IV discusses

the policy implications of my results. Section V concludes.

I Analytical Model of an Electricity Market

A. Model

This section introduces a simple model of a perfectly competitive, wholesale electricity market.

Extending the work of Fischer and Preonas (2010), I consider how environmental policies interact

to affect more than one pollutant. For simplicity, I assume that electricity demand (D) is perfectly

inelastic with respect to the wholesale price and that the market clears in a single period.5 In

the model, firms can generate electricity using two conventional energy sources (e.g., coal and

natural gas). I define X1 and X2 as the total generation from the two conventional sources. The

private generation costs incurred are expressed by the cost functions c1(X1) and c2(X2), where

0 < c′i(·) < ∞ and 0 < c′′i (·) < ∞ for i = 1,2. In addition, I assume that producing electricity

from the conventional energy sources results in the emissions of two pollutants – µ and ρ . I

assume that both conventional technologies have constant emission rates. That is, each unit of Xi

produced results in µi and ρi units of pollution. Therefore, the aggregate emissions are equal to

µ = µ1 ·X1 +µ2 ·X2 and ρ = ρ1 ·X1 +ρ2 ·X2.6

In the model, electricity is also be produced using a non-polluting, renewable energy source.

5The zero-elasticity assumption can be relaxed without qualitatively changing the following analytical results.
Intuitively, as demand becomes more elastic, the resulting scale and composition effects will both decrease by the
same proportion. As a result, the sign of the net change in pollution will be unchanged.

6In the subsequent empirical analysis, I do not assume that conventional generators have constant emission rates.
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Total renewable output is equal to r. Rather than solving for the competitive level of renewable

generation, I treat the level of r as exogenous. Using this simple framework, I examine how an

increase in renewable generation affects the emissions of µ and ρ under two different regulatory

settings. In the first case, a regulator levies a tax (τµ ) on each unit of µ . In the second case,

the regulator sets a binding cap (µ) on the aggregate emissions of µ . In both cases, I assume

the regulator faces an exogenous constraint which prevents a tax or cap from being placed on the

emissions of ρ .7

While I explicitly solve for the impact of renewable generation on pollution, the results are

directly applicable to examining how demand reductions affect emissions. To see this, first note

that for the market to clear, conventional production must equal the residual demand not met be

renewables – that is, X1 +X2 = D− r. Given that an increase in r has the same effect on residual

demand as an equal decrease in D, both will have the same impact on conventional output and

emissions.

B. Impact of Renewables with a Tax

First, consider the case where the regulator taxes each unit of µ . Assuming the market is perfectly

competitive, the problem can be expressed using a representative firm. The firm’s objective is to

maximize profits by choosing X1 and X2:

Max
X1,X2

π = P · (X1 +X2)− c1(X1)− c2(X2)− τµ · (µ1 ·X1 +µ2 ·X2), (1)

7If the regulator can choose any value for τµ , then, as the theory of the second-best highlights, the socially optimal
choice may not be the first-best Pigouvian tax (e.g., Lipsey and Lancaster (1956), Bennear and Stavins (2007)). In
particular, if one of the conventional sources has higher emission rates for both µ and ρ , the regulator will optimally
set τµ above the Pigouvian rate – consistent with previous studies highlighting that a tax on a single pollutant can serve
as a tax on unregulated co-pollutants (Burtraw et al. (2003), Holland (2011)). Instead, I assume the tax on µ cannot
exceed the Pigouvian level, and therefore, cannot proxy for the missing tax on ρ . This ensures that a reduction in the
unregulated emissions of ρ will provide an external benefit.
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where P is the wholesale price of electricity. The first-order conditions of the representative firm’s

problem and the market clearing condition are:

c′1(X1)+µ1 · τµ = P (2)

c′2(X2)+µ2 · τµ = P (3)

X1 +X2 = D− r. (4)

To determine the impact of an increase in renewable generation, I totally differentiate Eq. (2)-(4)

assuming that dr > 0 and dD = 0. This results in the following equations:

c′′1 ·dX1 = c′′2 ·dX2 (5)

dX1 +dX2 = −dr. (6)

Solving for the change in conventional generation caused by a change in renewable output from

Eq. (5) and Eq. (6) yields the following results:

dX1 =
( −c′′2

c′′1 + c′′2

)
·dr (7)

dX2 =
( −c′′1

c′′1 + c′′2

)
·dr. (8)

Eq. (7) and Eq. (8) reveal that an increase in renewable output reduces generation from both

conventional energy sources. As a result, an increase in renewable output – or similarly, a decrease

in demand – will strictly reduce the aggregate emissions of both pollutants.

C. Impact of Renewables with a Cap

Next, I explore how renewable generation affects pollution when the regulator sets a cap (µ) on

the aggregate emissions of µ . I assume the cap is binding and firms can freely trade permits which
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allow the holder to emit a unit of µ . The equilibrium price of the permits is represented by λµ .

The first order conditions of the representative firm’s problem and the two market clearing

conditions are shown below:

c′1(X1)+µ1 ·λµ = P (9)

c′2(X2)+µ2 ·λµ = P (10)

X1 +X2 = D− r (11)

µ1 ·X1 +µ2 ·X2 = µ. (12)

Totally differentiating Eq. (9)-(12), again assuming dr > 0 and dD = 0, results in the following

three equations:

c′′1 ·dX1 +µ1 ·dλµ = c′′2 ·dX2 +µ2 ·dλµ (13)

dX1 +dX2 = −dr (14)

µ1 ·dX1 +µ2 ·dX2 = 0. (15)

Combining Eq. (14) and Eq. (15), the impact of a change in renewable generation on X1 and X2 is

given by:

dX1 =
(

µ2

µ1−µ2

)
·dr (16)

dX2 =
(

µ1

µ2−µ1

)
·dr. (17)

Without loss of generality, assume µ1 > µ2. Eq. (16) and Eq. (17) reveal that dX1/dr > 0 and

dX2/dr < 0. While an increase in renewable output reduces total conventional output, generation

from the technology with the higher emission rate for µ must increase in order for the emission

cap to be reached. This result replicates the findings presented by Böhringer and Rosendahl (2010)
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and Fischer and Preonas (2010).

Figure 1 graphically demonstrates the preceding result. Panel A plots the initial equilibrium

levels of conventional generation, point A, prior to the increase in renewable generation. To satisfy

the the market clearing condition, point A must fall on the residual demand level curve. In addition,

to ensure the cap on µ is not exceeded, point A cannot fall to the right of the µ level curve.8 In the

graph displayed, I continue to assume µ1 > µ2.

Panel B of Figure 1 demonstrates how a decrease in the residual demand, due to an increase in r

or a decrease in D, affects conventional production. The total conventional output falls (X ′′1 +X ′′2 <

X ′1+X ′2). However, under the assumption that the cap on µ is still binding, the generation from the

technology with the higher emission rate of the capped pollutant will increase to continue to emit

µ units of the capped pollutant. As a result, the equilibrium levels of conventional output shift

from point A to point C.

While the aggregate emissions of µ remain unchanged, the total quantity of ρ emitted can

change as r increases, or as D falls. The total change in the unregulated pollution is given by

dρ = ρ1 ·dX1+ρ2 ·dX2. Substituting Eq. (16) and Eq. (17) into the preceding expression, the total

change in ρ caused by an increase in renewable electricity is:

dρ =
(

ρ1 ·µ2−ρ2 ·µ1

µ1−µ2

)
·dr. (18)

Eq. (18) reveals that an increase in r can increase or decrease the aggregate emissions of ρ .

Continuing to assume µ1 > µ2, if ρ1 < ρ2, then an increase in renewable generation will necessarily

reduce emissions of ρ . That is, if one technology has the higher emission rate for one pollutant

but not the other, then emissions of the unregulated pollutant will fall as renewable generation

expands. Panel C of Figure 1 demonstrates the case where emissions of ρ decrease as r increases.

The ρ level curves are less steep than the residual demand curve while the µ level curves are

steeper – implying that ρ1 < ρ2 and µ1 > µ2. As the equilibrium shifts from point A to point C,

8To highlight that the emission cap is binding, Panel A includes one possible iso-private cost curve running through
the bundle (X ′1, X ′2). In the absence of a binding cap on µ , the representative firm could produce D− r total units of
conventional output at a lower private cost by increasing X1 and decreasing X2.
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the equilibrium level of ρ falls from ρ ′ to ρ ′′.

Returning to Eq. (18), if the emission rates of the conventional technologies are positively

correlated (µ1 > µ2 and ρ1 > ρ2), then dρ/dr is no longer necessarily negative. Panel D of Figure 1

demonstrates the case where an increase in r increases ρ . The ρ ′ and ρ ′′ level curves are now not

only steeper than the residual demand level curve, they are also steeper than the level curve for the

capped pollutant (ρ1/ρ2 > µ1/µ2). Moving from point A to point C, the aggregate emissions of ρ

now increases.9

D. Separating Scale and Composition Effects

To further explore how increases in renewable generation interact with cap-and-trade programs,

as well as to provide the intuition that underpins the empirical approach I take in this paper, it

is helpful to expand the expressions for dX1/dr and dX2/dr presented in Eq. (16) and Eq. (17).

Combining Eq. (13) and Eq. (14), the impacts of a change in renewable generation on production

from energy sources 1 and 2 are given by:

dX1 =
( −c′′2

c′′1 + c′′2

)
·dr+

(
µ2−µ1

c′′1 + c′′2

)
·dλµ (19)

dX2 =
( −c′′1

c′′1 + c′′2

)
·dr︸ ︷︷ ︸

Scale Effect

+
(

µ1−µ2

c′′1 + c′′2

)
·dλµ︸ ︷︷ ︸

Composition Effect

. (20)

The first terms in Eq. (19) and Eq. (20) represent the change in X1 and X2 caused by an in-

crease in renewable generation, holding the pollution permit price constant. I define this effect as

the “scale effect”. As r increases, the scale effect unambiguously reduces generation from both

9There are two more cases not displayed in Figure 1. First, I have not displayed the case where the ρ level
curves are steeper than the residual demand level curve (µ1 > µ2 and ρ1 > ρ2) but not as steep as the µ level curve
(ρ1/ρ2 < µ1/µ2). In this case, the shift from point A to point C will reduce the level of ρ . This result demonstrates
that a positive correlation among the emission rates of the conventional technologies is a necessary condition, but not
a sufficient condition, for an increase in r to increase ρ . Second, there is a final, trivial case that is possible as well. If
the µ and ρ level curves have the same slope (ρ1/ρ2 = µ1/µ2), then the movement from point A to point C will not
affect the aggregate emissions of either pollutant.
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conventional sources. Intuitively, these reductions are identical to those presented in Eq. (7) and

Eq. (8) – the impacts renewable generation has on conventional generation when µ is being taxed.

Returning to Figure 1, the scale effect is displayed as the movement from point A to point B.

It is important to note that, regardless of the relative slopes of the pollution level curves, the scale

effect will necessarily reduce the aggregate emissions of ρ .10 However, just as the scale effect

will reduce the emissions of ρ , it will also unambiguously decrease the aggregate emissions of µ .

In a setting where µ is subject to a binding cap, the equilibrium price of the emissions permits,

λµ , must decrease.11 I define the change in conventional generation caused by the decrease in the

permit price, holding the residual demand constant, as the “composition effect”. The composition

effects on X1 and X2 are displayed on the right side of Eq. (19) and Eq. (20). As the permit price

falls, holding the residual demand constant, generation from the conventional technology with the

higher emission intensity for µ increases while the technology with the lower µ emission rate will

decrease.12

Returning again to Figure 1, the composition effect is shown as the movement, along the resid-

ual demand curve, from point B to point C. Unlike the scale effect, which necessarily reduces the

emissions of ρ , the composition effect has an ambiguous effect on ρ . If µi > µ j and ρi < ρ j,

then the composition effect will reduce the emissions of ρ . This case is displayed in Panel C.

Alternatively, if µi > µ j and ρi > ρ j – that is, if the technology with the higher emission rate of

the regulated pollutant also has the higher emission rate of the unregulated pollutant – then the

composition effect will increase the emissions of the unregulated pollutant. If the composition

effect dominates the scale effect, as is the case in Panel D, then the aggregate emissions of the

unregulated pollutant will increase.

10Combining the terms from Eq. (19) and Eq. (20), the aggregate change in ρ caused by the scale effects is given
by dρ

dr

∣∣∣
dλµ=0

= ρ1 ·
(
−c′′2

c′′1+c′′2

)
+ρ2 ·

(
−c′′1

c′′1+c′′2

)
< 0.

11To see that the permit price falls, substitute the expressions from Eq. (16) and Eq. (17) into Eq. (13). Solving for
dλµ/dr results in following expression, dλµ/dr =−(c′′2 ·µ1 + c′′1 ·µ2)/(µ2−µ1)

2 < 0.
12Combining the expressions for the composition effects, the resulting change in unregulated emissions, holding

the residual demand constant, is dρ

dλµ

∣∣∣
d(D−r)=0

= ρ1 ·
(

µ2−µ1
c′′1+c′′2

)
+ρ2 ·

(
µ1−µ2
c′′1+c′′2

)
R 0.
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II Empirical Setting and Data

The preceding section highlights that, in settings where a pollutant is subject to a cap, increasing

renewable generation, or decreasing electricity demand, can actually increase the emissions of

unregulated pollutants. The remainder of this paper examines whether this perverse outcome will

occur in a specific regional cap-and-trade program – the EPA’s NOX cap-and-trade program in the

Eastern U.S. This section describes the EPA program and the data I use to study the market.

A. EPA Clean Air Interstate Rule

One of the many pollutants emitted by fossil fuel power plants is NOX . When NOX interacts

with other atmospheric chemicals and sunlight, the resulting byproduct is ground level ozone – a

gas which has many negative health effects (Bell et al. (2004)). Throughout the 1990’s, several

regions in the eastern U.S. were failing to achieve federally mandated ozone standards. This was

particularly a problem during the summer when NOX combined with longer days, resulting in high

ozone levels. To address this problem, the EPA implemented the NOX Budget Trading Program

(NBP) in 2003. The NBP capped NOX emissions from power generators and industrial sources

during the summer “ozone season” (May-September).

While the NBP led to substantial reductions in ozone season emissions, unregulated NOX emit-

ted during the non-ozone season still imposed external costs. Largely to address this fact, the NBP

was replaced by the Clean Air Interstate Rule (CAIR) in 2009. The CAIR program consists of two

separate NOX cap-and-trade programs. The first places a cap on the annual NOX emissions from

electricity generating units. The second places a cap on ozone season NOX emissions from elec-

tricity generators and large industrial sources. For each ton of NOX emitted during May through

September, a generator must surrender one annual permit and one ozone-season permit. For each

ton of NOX emitted during October through April, only an annual permit must be used. The 27

states covered by the CAIR program are highlighted in Figure 2.13

13Arkansas, Massachusetts, and Connecticut are not subject to the annual NOX cap. Texas and Georgia are not
subject to the ozone season cap. The annual NOX cap does not cover any non-electric generating units. However, the
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Figure 3 displays daily prices for the annual and ozone-season NOX permits from the early

stages of the CAIR market in 2009 to the end of 2011. When the CAIR program began, the annual

NOX permits were trading at prices above $1,000 per ton and the ozone-season permits were

trading for several hundred dollars per ton.14 However, by 2011, the annual and ozone-season

NOX permit prices had plummeted – suggesting that, at the levels the NOX limits were set, the

caps were non-binding. Specifically, I use the term non-binding to mean that a marginal increase

in the cap will have no impact on the aggregate amount of NOX emitted. This is supported by the

fact that, during each year of the CAIR program, the annual and ozone-season NOX caps exceeded

the actual emissions (EPA (2013)).

While the NOX caps established by CAIR are currently in place, the future of the program is

in flux. In 2015, the CAIR program is scheduled to be replaced by the Cross-State Air Pollution

Rule (CSAPR). The CSAPR is similar to CAIR, but with two notable exceptions – CSAPR is

more stringent and it differentiates between sources based on location.15 As we continue to move

forward with the EPA’s NOX cap-and-trade programs – as well as with similar policies elsewhere

– it is important to uncover how emission caps, set at binding levels, will interact with the array of

environmental policies also being implemented.

The remainder of this paper focuses on the regional electricity markets covered by the CAIR

NOX cap-and-trade programs. I examine how expansions in renewable capacity would affect emis-

sions under the assumption that a binding cap exists on the annual emissions of NOX from power

plants. It is important to note that, in the CAIR region, other pollutants are subject to market

ozone season cap does cover a small number of non-electric generating, industrial units. For example, during 2011,
203 of the 3,307 ozone season sources covered were non-electric generating units. Estimating how production from
these industrial sources is indirectly affected by increases in renewable electricity is beyond the scope of this analysis.

14Prior to the implementation of the CAIR program, the CAIR ozone-season NOX permits – which were being
traded in a forward market – were fairly stable around $700 per ton of NOX . In contrast, the forward price for the
annual NOX permits fluctuated substantially. During the beginning of 2008, the annual permits ranged between $3,000
and $6,000 per ton. In July, 2008, the D.C. Circuit Court ruled that the CAIR program had “fatal flaws” and vacated
the program. As a result, forward prices for the annual permits plummeted and trading all but ceased. However, the
Court reversed its ruling in December, 2008 and the annual NOX permits rebounded to roughly $4,000 per ton by the
time CAIR program began in January, 2009.

15Recent work by Muller and Mendelsohn (2009) and Fowlie and Muller (2012) examine the potential efficiency
gains that can be realized by using trading-ratios to account for spatial differences in the marginal external damage of
pollutants by source.
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based regulations as well. Beginning in 1995, the Acid Rain Program (ARP) placed a cap on the

aggregate emissions of SO2 from electricity generating units. However, from 2009 an onwards,

the ARP cap has not been binding (EPA (2013)).16 Aside from the SO2 cap-and-trade program,

there are smaller scale market-based pollution regulations within the region covered by CAIR. For

example, ten Northeastern states are part of the Regional Greenhouse Gas Initiative (RGGI) which

places a cap on CO2 emissions.17 In addition, very localized cap-and-trade programs also exist.18

With these few small exceptions, during a period when the CAIR NOX cap is binding, there is

effectively one regulated pollutant (NOX ). The remaining pollutants – including CO2 and SO2 –

are effectively unregulated.

B. Fossil Fuel Generation and Emissions Data

To explore how renewable capacity expansions would interact with a binding NOX cap, I pose

the following thought experiment. Assuming power plants in the eastern U.S. are regulated by a

binding, annual NOX cap-and-trade program, how would the annual emissions of CO2, SO2, and

NOX be affected by adding 1,000 megawatts (MW) of wind or solar generation capacity to the

region?19

To answer this question, I build on the intuition provided by the analytical model. First, I

estimate the scale effect – the reduction in the emissions of each pollutant, holding NOX permit

prices constant. Of course, assuming the annual NOX cap is binding, the annual level of NOX

emitted will not change. Instead, the increase in renewable output will cause NOX prices to decline,

16In 2010, the SO2 cap reached its final level of 8.95 million tons – roughly half of the 1980 level of emissions from
the electricity sector. During 2011, the annual emissions of SO2 from generators covered by the ARP was only 4.54
million tons. In addition, beginning in 2010, the CAIR program also sets an annual cap on SO2 emissions. However,
given that the ARP cap is no longer binding, generators that are covered by both CAIR and the ARP have been able to
used banked permits to meet the CAIR SO2 cap. As a result, the CAIR SO2 cap is also non-binding.

17The states included in RGGI are Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New
York, Rhode Island, and Vermont. However, only four of the RGGI states are also participating in the CAIR annual
NOX cap-and-trade program.

18For example, in an effort to achieve attainment of the federal ozone standard, the Houston, TX metropolitan area
operates an annual NOX cap-and-trade program.

19For comparison, there was 59,629 MW of grid-connected wind capacity and 3,215 MW of solar capacity installed
in the U.S. in 2012. Electricity capacity statistics are available from the U.S. Energy Information Administration.
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causing a potential change in the composition of fossil generation. Therefore, the second step is to

estimate how much the resulting composition effect alters the annual emissions of each pollutant.

To estimate the scale effect caused by adding 1,000 MW of renewable capacity, I must first

determine which conventional generators would be affected by the new renewable output. Figure 3

displays the ten North American Electric Reliability Council (NERC) regions that make up the

U.S. electricity grid. The continental U.S. transmission network can be thought of as three separate

interconnections: the Western Interconnection (the WECC region), the Texas Regional Entity (the

TRE region), and the Eastern Interconnection (the FRCC, MRO, NPCC, RFC, SERC, and SPP

regions combined). My empirical analysis focuses exclusively on the NERC regions in the Texas

and Eastern Interconnections – which combined, fully encompass the region covered by the CAIR

program.

While very little trading occurs across the Interconnections, electricity is traded between NERC

regions located within the Eastern Interconnection.20 To address this fact, I present two sets of es-

timates of the scale effect. The first set of estimates are based on the assumption that an increase

in renewable generation in a given NERC region will directly offset conventional generation only

within the same NERC region. The second set of estimates is based on the assumption that an

increase in renewable generation can directly offset output from conventional generators located

anywhere in the same Interconnection. In reality, the truth is in between the two extremes. Due

to transmission constraints, congestion, and losses, electricity generated at one point in the East-

ern Interconnection is an imperfect substitute for electricity generated at a different point in the

Interconnection. The results presented in the subsequent sections, however, demonstrate that the

estimates are quite insensitive to trading assumption imposed.

To examine how emissions would be affected by increasing renewable capacity, I use data

from the EPA’s Continuous Emission Monitoring System (CEMS). The CEMS data records the

20Within each Interconnection, electricity is produced and traded at a synchronized frequency. To trade electric-
ity between Interconnections, electricity can either be converted from alternating current to direct current (DC) and
transmitted across a limited number of DC transmission lines, or be transmitted through a limited number of variable
frequency transformers.
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gross, hourly generation from almost every fossil fuel generating unit in the U.S.21 In addition,

the CEMS data records the hourly CO2, SO2, and NOX emitted by each generating unit. Table 1

summarizes the emissions rates from three broad groups of generators: combined cycle natural gas

units, coal units, and ‘other’ units. The generators are all located in the states participating in the

CAIR program. The median emission rates represent the 50th-percentile of the unit-level, average

emission rates from January 1, 2009 through December 31, 2012. It is worth noting that there is

a clear positive correlation in the emission rates across technologies. Combined cycle generators

typically have the lowest emission rates for all three pollutants while coal units have the highest

emission rates for all three. Recall from the analytical model, a necessary condition for renewable

output to increase unregulated pollution is for the emission rates of the various pollutants to be

positively correlated across conventional generators.

Within the CEMS data, I do not observe the hourly generation from non-fossil fuel sources.

As a result, I must assume that only fossil fuel units will be affected by an increase in renewable

output. While I cannot directly test this assumption, there is evidence that suggests it is reasonable.

Figure 4 provides the generation shares by different technologies in each of the NERC regions.

The main non-fossil fuel sources are nuclear and hydroelectric. Nuclear generators have very

low marginal generation costs. As a result, it is unlikely that nuclear units will be on the margin

at any point in time in any region.22 On the other hand, hydroelectric generation is not a zero

marginal cost source of electricity – there is an opportunity cost incurred by using water to produce

electricity. As a result, it is possible that hydroelectric generation may be the marginal source

of electricity and will be offset by renewable output. However, given that the CAIR states are

primarily located in the SERC, RFC, TRE, and FRCC regions – which do not have substantial

amounts of non run-of-river hydroelectric potential – this is not a major concern.23

21While the CEMS data is the best available data, there are two potential shortcomings. First, fossil units with
capacities below 25 MW are not required to report their hourly generation and emissions. Second, some combined
cycle units may under report their gross generation – the output from the second cycle could be missing. Nonetheless,
the CEMS data captures the vast majority of generation that takes place in the Texas and Eastern Interconnections.

22The results presented in Novan (Forthcoming) provide evidence that, in the Texas Interconnection, output from
nuclear generators is unaffected by production from wind turbines.

23If an increase in renewable output does offset hydroelectric output, the stored water will simply be used at a
different point in time. Therefore, the renewable output will still have a direct effect on emissions – however it will
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C. Simulating Renewable Generation

To determine how increases in wind or solar capacity will affect emissions, I of course need to

predict how much additional renewable generation would be supplied. In reality, both the quantity

and timing of electricity supplied by additional wind or solar capacity will depend on where the

wind turbines or solar panels are located. However, the goal of this analysis is not to examine how

the renewable potential differs across locations. Rather, the goal is to explore how a given increase

in renewable electricity will impact emissions – and to explore whether the impact differs across

regions. Therefore, I abstract from the fact that wind patterns and solar potential differ across

locations.

To simulate a realistic time series of hourly wind or solar generation, I collect data on the

hourly aggregate capacity factors – the total hourly megawatt-hours (MWh) produced dividied by

total installed capacity (MW) – from wind turbines and solar photovoltaic panels installed in the

Texas Interconnection.24 Assuming that new wind turbines or solar panels installed in the Texas

market would have similar hourly capacity factors as the existing capacity, a time series of the

hourly output provided by 1,000 MW of new capacity can be predicted by simply multiplying

the hourly capacity factors by the added capacity (1,000 MW). To estimate the impact of adding

renewable generation in different NERC regions, I simply assume that the output from the 1,000

MW of new wind or solar capacity would be identical in each region and equal to the simulated,

hourly time series of renewable output in the Texas Interconnection.

not occur immediately when the renewable generation occurs. Identifying how the hydroelectric generation is re-
optimized is beyond the scope of the present study. As a result, I abstract from the impact renewable generation may
have on hydroelectric units.

24Beginning in 2012, the Texas system operator, ERCOT, provides information on the hourly generation from both
wind farms and solar plants connected to the market. In addition, the Texas Public Utility Commission provides
information on the installed wind and solar capacity. Dividing the hourly generation by the installed capacity provides
the hourly capacity factors during 2012.
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III Estimating the Scale Effect

A. Empirical Strategy

I first estimate the scale effect that would be caused by the increase in renewable generation.

That is, holding NOX permit prices constant, how much NOX , CO2, and SO2 is reduced annually

by increasing renewable capacity? My empirical strategy relies on the fact that an increase in

renewable generation will cause an equal and opposite decrease in conventional output.25 Recall,

I assume that only fossil generation will be offset by renewables. In addition, I assume that only

fossil generation in the same NERC region – or alternatively, in the same Interconnection – will

be reduced. Therefore, rather than directly estimating how an increase in renewable generation

affects pollution, I instead estimate how an equal reduction in fossil generation affects emissions.

Several recent studies employ a similar strategy to estimate how increases in renewable output

– or shifts in electricity demand – will affect emissions (Callaway and Fowlie (2009), Siler-Evans,

Azevedo and Morgan (2012), Graff Zivin, Kotchen and Mansur (2014), Carson and Novan (2013),

Jacobsen (2014), Holladay and LaRiviere (2014)). The results reveal that, in different markets, and

at different points in time, a change in fossil output will have very different impacts on pollution.

The variation across markets stems from the fact that the mix of generation technologies differs

regionally. The variation over time stems from the fact that different generators are on the margin

at different levels of demand.

Therefore, to accurately estimate the scale effect, I must allow renewable generation to have

heterogeneous impacts on emissions. To accomplish this, I first estimate the following model for

each individual NERC region – or alternatively, for each Interconnection:

Et = fm(Gt)+αm + εt , (21)

25Again, this assumes that demand is perfectly inelastic to wholesale, electricity prices. Relaxing this assumption
will reduce the magnitude of the scale and composition effects. However, it will not change the sign of the net pollution
changes.
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where

Et = Hourly NERC (or Interconnection) CO2 (tons), SO2 (lbs), or NOX (lbs),

Gt = Hourly NERC (or Interconnection) fossil fuel generation (MWh).

The function fm(·), which I specify as a 5th degree Chebyshev polynomial, captures the relation-

ship between the hourly level of fossil generation and the hourly emissions.26 While fm(·) can be

expected to be strictly increasing, the shape will vary across regions based on the emission rates

of the generators in the region and the order in which they are dispatched. In addition, I allow

fm(·) to vary by month (m) to account for seasonal differences in the availability of conventional

generators. For example, during months with low demand, certain fossil units may be taken off-

line. As a result, for the same level of fossil output, different units may be on the margin during

different months. Monthly fixed effects control for trends that can create a spurious correlation

between fossil generation and emissions. To account for serial correlation, I calculate Newey-West

standard errors using a 24-hour lag. It is important to note that the subsequent estimates of the

composition effect – presented in a later section – are made specifically for the first year of the

CAIR program, 2009. To produce estimates of the scale effects during the same time period, the

estimates of Eq. (21) are made using hourly data spanning 2009.

To estimate how emissions are impacted by the scale effect caused by the new wind or solar

output, I use my NERC-specific (or Interconnection-specific) estimates of fm(·). During hour t, if

renewable output increases in a given NERC region (or Interconnection) by rt MWh’s, the required

fossil fuel generation in the same NERC region (or Interconnection) will fall from Gt to Gt − rt .

As a result, the hourly emissions in the same NERC region (or Interconnection) will change by

[ fm(Gt − rt)− fm(Gt)]. Using my NERC-specific (or Interconnection-specific) estimates of fm(·)

and the simulated series {rt}t=8,760
t=1 , the hourly renewable output added by installing 1,000 MW of

new wind or solar capacity, the annual scale effect for the given NERC region (or Interconnection)

26Estimates were also made using 3rd through 7th degree polynomials. The resulting estimates of the scale effects
were statistically indistinguishable.
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can be estimated as follows:

Annual Scale Effect =
t=8,760

∑
t=1

[
f̂m(Gt− rt)− f̂m(Gt)

]
. (22)

In the specification of the scale effect above, a key assumption is being imposed. Specifically,

as the level of renewable output increases, the relationship between hourly fossil generation and

hourly emissions, fm(·), remains constant. Recall that fm(·) is largely determined by the order in

which the fossil fuel units are dispatched. By not allowing fm(·) to change with the increase in

renewable output, I am assuming that fossil fuel units are still dispatched in the same order. For that

to be the case, the input prices – including the NOX permit prices – must be the same.27 Therefore,

the expression in Eq. (22) represents the annual change in emissions caused by an increase in

renewable output, holding NOX prices the same – which is the definition of the scale effect.

It is important to note that the previous studies focused on estimating how pollution would re-

spond to marginal changes in renewable output or demand are also only uncovering the scale effect

(Callaway and Fowlie (2009), Siler-Evans, Azevedo and Morgan (2012), Graff Zivin, Kotchen and

Mansur (2014), Carson and Novan (2013), Jacobsen (2014), Holladay and LaRiviere (2014)). The

only notable difference between the previous studies and my empirical approach is that my strategy

enables me to predict the impact of discrete changes in renewable generation, as opposed to strictly

marginal changes in renewable output. However, it is important to highlight that my estimates do

not allow increases in renewable output to have a dynamic impact on fossil generation. That is, an

increase in renewable output during hour t only affects emissions during the same hour. While this

is a reasonable approximation for small to moderate increases in renewable output, large increases

in renewable production may affect fossil generation decisions across multiple hours. Therefore,

my estimation strategy should not be used to predict the impact of large shifts in renewable supply.

In addition, it is important to note that the scale effects I am estimating are short-run values. I am

assuming that there are no changes to the stock of non-renewable generators.

27Throughout the analysis, I continue to assume that the supply curves of the fossil fuels used to generate electricity
are perfectly elastic over the relevant ranges. Specifically, I am assuming that renewable generation changes of the
magnitude I am studying will not affect the market price for coal or natural gas.
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B. Estimates of the Scale Effect

To produce estimates of the scale effect, I first estimate the relationship between hourly fossil

generation and hourly emissions, fm(Gt) from Eq. (21), for each of the NERC regions and for

both of the Interconnections. To highlight two key patterns that are important for understanding

the subsequent estimates of the scale effects, Figure 5 presents the estimates of fm(·) for two

NERC regions (TRE and RFC) during a single month (July, 2009).28 In addition, the 744 hourly

observations of (Et ,Gt) during July, 2009 are plotted to highlight the goodness of fit.

The estimates of fm(·) first reveal that, in each region, there is variation in the slope of the

fitted polynomial across levels of fossil generation. This is most pronounced for SO2 and NOX –

especially in the TRE region. For example, the relationship between hourly SO2 and hourly fossil

generation becomes flatter at higher levels of generation. This is driven by the fact that less coal

generation is on the margin at higher levels of fossil output. In the case of NOX , the relationship

between the hourly emissions and the hourly fossil output becomes steeper at the higher levels of

Gt . This is driven by the fact that less fuel-efficient natural gas generators are primarily on the

margin at the highest levels of fossil output.

Second, Figure 5 reveals that there is substantial variation in the marginal emission rates across

regions. To highlight this fact, I calculate the average marginal emission rate in each region.29

For each of the three pollutants, the average marginal emission rates are substantially higher in

the RFC region compared to the TRE region. This is driven by the fact that, in the RFC region, a

substantially larger share of output comes from coal units – which is shown in Figure 4.

Using the NERC-specific (or Interconnection-specific) values of f̂m(·), I estimate Eq. (22) –

the annual scale effect of adding 1,000 MW of wind or solar capacity to a specific NERC region

(or Interconnection). To summarize the results, Table 2 presents the estimates of the average

emissions offset by a MWh of renewable output supplied by the new wind or solar capacity. The

28Of the NERC regions in the Eastern Interconnection, I highlight the RFC region because it is the largest in terms
of total generation.

29To estimate the average marginal emission rate, I re-estimate Eq. (21) and restrict fm(Gt) = βm ·Gt – where β̂m is
the estimate of the average marginal emission rate during month m.
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results reveal that significant reductions in each of the pollutants would be achieved. Moreover, the

estimates highlight that the scale effects are heterogeneous. First, within the same region, the two

technologies can offset different amounts of pollution. For example, in the TRE Interconnection,

wind turbines offset more SO2 per MWh than solar panels but less NOX per MWh. This is due

to the fact that the wind turbines will produce more heavily during the low demand hours when

the marginal SO2 rates are higher and the marginal NOX rates are lower.30 There is even greater

variation in the scale effects across Interconnections. Consistent with the results presented in

Figure 5, offsetting fossil generation from the Eastern Interconnection, as opposed to the TRE

Interconnection, will result in larger decreases in emissions.

To get a sense of the magnitude of the predicted emissions reductions, I compare the estimates

of the annual emissions offset to the total pollution emitted in the region during 2009. For example,

in the Texas Interconnection, the scale effect caused by adding 1,000 MW of new wind capacity

will reduce 0.8% of the annual CO2 emitted in the Texas Interconnection, 0.8% of the NOX , and

0.5% of the SO2 while the new solar capacity will offset 0.6% of the CO2, 0.9% of the NOX , and

0.2% of the SO2.31

IV Estimating the Composition Effect

The preceding section quantifies the annual pollution reductions caused solely by the scale effect.

With a binding cap on NOX , however, the annual reductions in NOX will not be achieved. Instead,

the scale effect will push the NOX permit price downwards until the cap is again binding and the

net change in NOX is zero.

As the analytical model in Section I demonstrates, the resulting decrease in the permit price

can change the relative composition of generation from conventional sources, potentially causing

30These results are consistent with the estimates of the impact of wind and solar generation on TRE emissions
presented by Novan (Forthcoming).

31To calculate the changes in the level of emissions, the estimates of the per MWh scale effects can simply be
multiplied by the predicted annual increases in wind or solar output. The predicted annual increase in wind generation
is 2,338,858 MWh (an average capacity factor of 0.27) and the predicted increase in solar output is 2,022,861 MWh
(an average capacity factor of 0.20).
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a change in the amount of unregulated pollution emitted. Of course, in the analytical model, the

emission rates of the conventional technologies are fixed. As a result, the only way for conventional

producers in the model to change their level of emissions is to alter their level of generation. In

reality, it is possible for a generator to alter the level of NOX emitted without changing the level

of electricity produced.32 If a reduction in the NOX permit price causes fossil fuel units to alter

their NOX emission rates, and not change their level of production, then it is possible that there

will be no meaningful composition effect – and therefore, no additional change in the levels of the

unregulated emissions.

In this section, I provide evidence that a decrease in NOX permit prices will cause a composition

effect that increases the level of CO2 and SO2 emitted. Combining the estimates of the scale

and composition effects caused by adding renewable capacity, I also present estimates of the net

changes in CO2 and SO2.

A. Identification Strategy

To determine if a change in the NOX permit price will cause a composition effect that alters the

level of unregulated emissions, ideally I would be able to directly identify how changes in the NOX

permit price, holding the total level of fossil generation constant, affect the level of emissions.

Unfortunately, much of the observed variation in the price of NOX permits is likely driven by

factors that affect emissions through other channels as well (e.g., fuel price changes or demand

shifts).

To identify the impact of permit price changes on emissions, I instead take advantage of the

abrupt change in the price of emitting NOX that occurs between the ozone season and the non-

ozone season. Recall, during the non-ozone season (October through April), only a permit from

the annual market must be surrendered for each ton of NOX emitted. During the ozone season

32For example, generators can achieve small reductions in their NOX emission rates by modifying their combustion
process. In addition, the vast majority of generators have end-of-pipe pollution control technologies which can be
turned on or off. For example, selective catalytic reduction (SCR) add-ons reduce NOX rates by up to 90% and
selective non-catalytic reduction (SNCR) add-ons reduce NOX rates by roughly 35% (Fowlie (2010)).
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(May through September), an annual permit and an ozone season permit must be used. Referring

to Figure 3, on April 30, 2009, the last day before the start of the ozone season, emitting a ton of

NOX effectively had an expected cost of $1,100. On the following day, the first day of the 2009

ozone season, emitting a ton of NOX had an expected cost of $1,479 – the ozone permits were

trading for $379/ton.

To get a sense of the magnitude of this change, consider the impact on the generation costs

of a coal fired unit. Depending on the type of coal burned, the fuel costs typically range between

$20 and $30 MWh. For the median coal fired unit in my sample with a NOX emission rate of

2.85 pounds/MWh, it cost $1.57/MWh to pay for the NOX emissions on April 30, 2009. On the

very next day, it cost $2.11/MWh. Therefore, the switch from non-ozone to ozone season causes

roughly a 3% increase in the marginal generation cost of a typical coal unit. While this is not

a substantial change in the marginal generation cost, it certainly may be large enough to affect

generation decisions. Moreover, it is reasonable to expect that moderate increases in renewable

output – as I am considering in this study – will have similarly small impacts on NOX permit

prices.

The discrete change in the cost of emitting NOX at the beginning of the 2009 ozone season

serves as a natural experiment. Comparing the average hourly emissions during the periods im-

mediately before and after the switch, I can estimate how a change in the cost of emitting NOX

affects the emissions from fossil fuel generating units. Unfortunately, by the end of the 2009 ozone

season, the ozone season permit prices had fallen dramatically. Therefore, with the exception of

Spring 2009, the price discontinuity between the ozone and non-ozone seasons is trivially small.

Therefore, I must identify the impact of NOX prices using a single event.

My objective is to determine whether, after controlling for the level of fossil generation, the

average hourly emissions of CO2, SO2, and NOX decrease in the Eastern Interconnection after the

2009 ozone season begins. Recall from Figure 2, generating units in the TRE interconnection are

not part of the ozone season NOX market. Therefore, there will be no discontinuity in their NOX

prices. Instead, I use the set of fossil fuel generators in the Texas market to conduct a falsification
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test of my main results.

Figure 6 plots the hourly emissions and fossil generation in the Eastern Interconnection during

a 20 day window surrounding the beginning of the 2009 ozone season. If the relationship between

emissions and generation shifts down after the ozone season begins, this would suggest that a

higher NOX price leads to lower levels of each pollutant. From the figures, there is some visual

evidence that the ozone season emissions were in fact lower. In particular, for a given level of

fossil output, the aggregate emissions of CO2 and SO2 appear to be lower during the period with

higher NOX prices.

B. Econometric Specification

To test whether the switch to the higher NOX prices does in fact decrease pollution, I focus on

how emissions change in the narrow 20 day window surrounding the beginning of the 2009 ozone

season. Using hourly CEMS data spanning April 21, 2009 through May 10, 2009, I estimate the

following model:

Et = α ·Ozonet + f (Gt)+θ ·Datet +δh,w + εt , (23)

where

Et = Hourly Eastern Interconnection CO2 (tons), SO2 (lbs), or NOX (lbs),

Ozonet = Indicator for Ozone Season (1 if during Ozone Season),

Gt = Hourly Eastern Interconnection gross fossil fuel generation (MWh).

In the specification above, α represents the average change in hourly Eastern Interconnection emis-

sions, holding fossil generation constant, caused by the start of the ozone season.33 It is important

to note that I do not estimate the model separately for each individual NERC region in the Eastern

33The Eastern Interconnection emissions and generation includes output and pollution from fossil fuel unit located
in the MRO, SPP, and NPCC NERC regions – even though these regions are not fully covered by the CAIR program.
These regions are included due to the fact that an increase in the NOX permit prices could induce pollution leakage
into the non-CAIR Eastern Interconnection states. This leakage would nonetheless be part of the resulting composition
effect that I would like to capture.
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Interconnection. If the discontinuity in the NOX prices causes a redistribution of the generation

across NERC regions, then this is part of the composition effect that I want to capture in α . Es-

timates are also made using 14 and 28 day windows. The results from these robustness checks –

which are presented in Appendix Table 1 – are very similar.

In Eq. (23), f (·) is a 3rd degree Chebyshev polynomial that flexibly controls for the fact that

the hourly level of pollution emitted from the Eastern Interconnection varies with the level of

generation in the region. To control for potential differences between the composition of units

generating on weekdays versus weekends, δh,w is a set of hourly fixed effects that are allowed

to differ across weekends and weekdays.34 To control for potential correlation between the Ozone

indicator and continuous trends in emissions over the 20 day window, I also include a simple linear

time trend. Additional estimates are also made with higher order time trends. These results are

presented in Appendix Table 1. To account for serial correlation, I calculate Newey-West standard

errors based on 24-hour lags.

Intuitively, the increase in the cost of emitting NOX is expected to reduce the average hourly

NOX emitted. Therefore, I expect α̂NOX < 0. If α̂CO2 < 0 and α̂SO2 < 0, this would provide evi-

dence that, holding the level of fossil generation constant, the increase in the cost of emitting NOX

also causes a decrease in the average hourly emissions of CO2 and SO2. Under the assumption that

fossil fuel generators respond symmetrically to NOX price changes, observing α̂NOX , α̂CO2 , and

α̂SO2 all less than zero would provide evidence that a decrease in the NOX price would result in a

composition effect that increases the emissions of all three pollutants. Of particular interest will be

the following two ratios:

CO2 Composition Effect =
∂CO2/∂Ozone
∂NOX/∂Ozone

=
αCO2

αNOX

,

SO2 Composition Effect =
∂SO2/∂Ozone
∂NOX/∂Ozone

=
αSO2

αNOX

.

34Estimates of the model were also made by simply dropping weekends from the sample. The results are again very
similar.
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The first ratio represents how much additional CO2 (tons) would be emitted for each additional

pound of NOX emitted. Similarly, the second ratio represents how much additional SO2 (pounds)

would be emitted for each one pound increase in NOX .

C. Event Study Results

The first row of Table 3 presents the estimates of α for each pollutant. On average, after the

beginning of the 2009 ozone season, hourly Eastern Interconnection NOX emissions fall by 16,809

pounds, hourly CO2 falls by 2,582 tons, and hourly SO2 falls by 90,629 pounds. Relative to the

average hourly emissions during the same 20 day period, these reductions represent 5.7% of the

Eastern Interconnection NOX , 1.4% of the CO2, and 8.4% of the SO2.

To highlight how these changes are being driven by shifts in the composition of generation,

I estimate Eq. (23) using the aggregate hourly Eastern Interconnection generation (MWh) from

different technologies as the new dependent variables. I separate the fossil generation reported in

the CEMS data into three different types of output: generation from coal units, generation from

combined cycle natural gas units, and all ‘other’ generation, which is almost entirely from natural

gas turbines. The estimates of α , which are presented in the third row of Table 3, represent the

average change in hourly generation from the various sources following the start of the ozone

season. The results reveal that the higher NOX prices lead to a decrease in coal fired production –

which is typically the most emission intensive – and a corresponding increase in combined cycle

natural gas output – which, on average, has the lowest emission rates.

An obvious concern with the preceding estimates is that they are identified off of a single event.

It is certainly possible that some other event, which coincides with the beginning of the 2009 ozone

season, actually causes the observed change in emissions. To provide supporting evidence that this

is not the case, I re-estimate the model specified by Eq. (23) using hourly data from the Texas

Interconnection. Recall, Texas generators are not required to participate in the ozone season NOX

market. Moreover, there is very little trading between the Texas and Eastern Interconnection.

Therefore, the Ozonet indicator – which switches from 0 to 1 on May 1, 2009 – should have no
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impact on the average hourly emissions from the Texas generators. If the previous estimates of the

composition effects had been driven by something other than the discontinuity in NOX prices (e.g.,

fuel prices changes), then the significant impacts would likely not be confined to the region covered

by the ozone season market. Estimates of α̂ for the Texas Interconnection (TRE) are presented in

the second row of Table 3. The ozone switch does not have a significant impact on any of the

pollutants.

To provide evidence that the effect of Ozonet on emissions is driven by the change in NOX

prices, and not by other regulations that could coincide with the ozone season switch, I also re-

estimate the model using each 20 day window around the Spring and Fall ozone switches occurring

after the Spring 2009 switch – Fall 2009 through Fall 2012. Given that the ozone season NOX

prices were very close to zero during these later periods, there effectively is no discontinuity in

the expected cost of emitting NOX . Therefore, if the effect of Ozonet on emissions is caused by

something other than the NOX prices, there may still be significant impacts of the ozone season

switch on emissions. However, I find no significant impacts from the later ozone switches.

Finally, it is possible that the estimates of the standard errors of α̂NOX , α̂CO2 , and α̂SO2 are

biased towards zero.35 Therefore, I may be concluding that αNOX , αCO2 , and αSO2 are significantly

less than zero when the true values are in fact zero. To provide evidence that this is not the case,

I estimate a number of “placebo ozone effects”. Specifically, I split the period from January 1,

2009 through December 31, 2012 into 72 mutually exclusive 20 day periods. For each of these 72

windows, I treat the mid-point as the beginning of a placebo ozone season and I re-estimate the

model specified in Eq. (23). Given that there is no ozone switch occurring on these placebo dates, I

expect the estimates of α̂ to be centered around zero. If the true values of αNOX , αCO2 , and αSO2 –

from the actual 2009 ozone season beginning – all equal zero, then the previous estimates of α̂NOX ,

α̂CO2 , and α̂SO2 would simply be drawn from a distribution similar to the distribution of placebo

estimates.

Figure 7 presents the cumulative distribution of the 72 placebo estimates for each pollutant. As

35For example, using Newey-West standard errors based on a 24-hour lag may not fully account for a complicated
autocorrelation structure in the errors.
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expected, the placebo effects are centered around zero. The plots also include the actual estimates

of the Spring 2009 ozone treatment effect. For each of the pollutants, the estimates of the true ozone

effect are in the extreme left tail of the distribution. Only three placebo estimates are more negative

than α̂CO2 = −2,582 tons. No placebo estimates are less than α̂SO2 = −90,629 pounds. Finally,

only one placebo estimate is less than α̂NOX =−16,809 pounds. Combined, these results provide

strong evidence that the discontinuous increase in the cost of emitting NOX at the beginning of the

2009 ozone season causes decreases in Eastern Interconnection emissions of each pollutant.

D. Net Pollution Changes

This section presents estimates of the net changes in annual emissions that would be caused by

adding 1,000 MW of solar or wind capacity to the various NERC regions. Recall, the estimates

from Table 2 reveal that, holding NOX prices constant, the increase in renewable generation will

result in significant reductions in each of the pollutants. Under the assumption that the cap on

NOX is binding, the scale reduction in NOX will not represent the net change in NOX . Instead, the

equilibrium NOX permit prices will decrease to the point where the NOX cap is again binding and

the net change in NOX is zero.

To predict the net changes in annual emissions, I must estimate how much the CO2 and SO2

emissions change as the NOX prices fall and the net change in NOX returns to zero. To estimate

this resulting composition effect, I use the estimates of α from Eq. (23). The ratio αCO2/αNOX

represents the increase in CO2 for each additional pound of NOX emitted – holding the level of

fossil generation constant.36 Similarly, αSO2/αNOX represents the additional SO2 emitted for each

extra pound of NOX .

Using the estimates from Eq. (23), I find α̂CO2/α̂NOX = 0.15 tons of CO2 per pound of NOX

and α̂SO2/α̂NOX = 5.39 pounds of SO2 per pound of NOX . These positive point estimates suggest

that, as the NOX permit prices fall, and the NOX emissions re-increase to the capped level, the

emissions of CO2 and SO2 will increase as well. To predict the net change (∆) in CO2 and SO2

36Again, this assumes that the response of generators is symmetric to equal increases and decreases in NOX prices.
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emissions, I solve for the following two values:

Net ∆CO2 = (Scale ∆CO2)−
(

α̂CO2

α̂NOX

)
· (Scale ∆NOX), (24)

Net ∆SO2 = (Scale ∆SO2)−
(

α̂SO2

α̂NOX

)
· (Scale ∆NOX), (25)

where the annual effects – Scale ∆CO2, Scale ∆SO2, and Scale ∆NOX – are specified by Eq. (22).

There are two important caveats to note. First, the estimates of αNOX , αCO2 , and αSO2 are made

using observations surrounding the beginning of the 2009 ozone season switch. During a different

year or season, the same change in the cost of emitting NOX may result in different changes in

emissions.37 Nonetheless, it is reasonable to expect that the values of αNOX , αCO2 , and αSO2 would

remain negative given the expected substitution away from coal towards cleaner gas units. Second,

the estimates of αNOX , αCO2 , and αSO2 correspond specifically to the change in the cost of emitting

NOX that was observed at the beginning of the 2009 ozone season. With a different change in NOX

prices, the ratios of αCO2/αNOX and αSO2/αNOX may differ. However, recall that the start of the

2009 ozone season caused a fairly small change in the cost of emitting NOX – which resulted in

roughly a 3% change in the marginal generation cost for a typical coal unit. This small price change

serves as a reasonable proxy for the magnitude of permit price changes that would likely be driven

by moderate expansions in renewable electricity – or similar decreases in electricity demand.

Estimates of the net changes in CO2 and SO2 – Eq. (24) and Eq. (25) – are presented in

Table 4.38 Estimates are made using the NERC-specific scale effect estimates as well as the

Interconnection-specific scale effects. The results presented in Table 4 represent the net impact

of a MWh of renewable output on the annual emissions of CO2 and SO2. Focusing first on the

net effects on CO2, the estimates reveal that the composition effect erodes a sizable portion of the

pollution reductions caused by the scale effect. In the TRE region, the net CO2 reductions caused

37Differences over time in the values of α could stem from variation in the level of demand or in the relative fuel
prices – both of which would alter the set of fossil fuel units operating and the magnitude of their responses.

38To calculate the standard errors of the point estimates, I treat the point estimates of α̂CO2/α̂NOX and α̂SO2/α̂NOX as
known constants. For example, the variance of the estimate of the net CO2 avoided is solely a function of the variance
of the scale impacts on CO2 and NOX and the covariance of the CO2 and NOX scale effect estimates.
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by solar and wind are 21% and 15% smaller than the predicted scale effects, respectively. In the

Eastern Interconnection, the net CO2 avoided by solar and wind are 28% and 26% smaller than the

predicted reductions provided by the scale effects.

Turning our attention to the net impacts on SO2, the results are striking. In each region, and

for each technology, the estimates reveal that increases in renewable capacity will result in sizable

increases in SO2 emissions. There is some variation in the net impacts of different investments on

SO2. For example, in the TRE region, each MWh from new wind turbines increases SO2 by 2.175

pounds while each MWh from the new solar capacity will increase SO2 by 4.068 pounds. These

differences are driven by the fact that, compared to solar panels, wind turbines in Texas reduce

more SO2 and less NOX through the scale effects.

E. Discussion

The preceding estimates provide evidence that, in the presence of a binding NOX cap, renewable

expansions will increase the emissions of some pollutants and decrease the emissions of others.

Given this result, an obvious question is the following – will the renewable expansions provide

a net external benefit? Before this question can be addressed, it is important to note that the

estimates presented in Table 4 represent the net changes in emissions throughout the entire eastern

U.S. I am not able to explore where, or during what times of the year, the pollution increases or

decreases would occur. While the spatial and temporal distributions of the emissions changes are

irrelevant for estimating the social benefit provided by the avoided CO2, the social benefits, or

costs, provided by changes in the emissions of non-perfectly mixing pollutants (e.g., SO2, NOX )

do depend on the time and location. Therefore, I cannot directly estimate the external benefits

provided by the various renewable capacity investments examined.39

Nonetheless, I can use estimates of the average social costs – across both time and space – of

the various pollutants to provide rough estimates of the external benefits of the renewable capacity

additions. To place a dollar value on the social benefit of reducing a ton of CO2, I rely on an

39I also do not observe the emissions of the other pollutants emitted by fossil fuel generators.
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estimate of the social cost of carbon reported by the Interagency Working Group. The central

estimate provided by IAWG (2013) suggests that each ton of CO2 offset provides a benefit of $32.

To estimate the external benefits provided by reductions – or similarly, the external costs imposed

by increases – in SO2 and NOX , I use social cost estimates from Banzhaf and Chupp (2012). The

authors use a Tracking and Analysis Framework to predict the social costs that accrue from a

marginal increase in SO2 and NOX in each individual state. Among the 27 states participating in

the CAIR program, an additional pound of SO2 imposes an estimated average cost on society of

$1.99. An additional pound of NOX imposes an estimated average social cost of $0.33.40

Using the estimates of the social costs of CO2, SO2, and NOX , I first predict the social benefits

provided by the pollution reductions stemming solely from the scale effects. To do so, I multiply

the estimates of the average reduction in each pollutant (Table 3) by the corresponding pollutant’s

social cost. Aggregating across pollutants results in an estimate of average external benefit per

MWh of renewable generation. The results are presented in the first two columns of Table 5. In

the Texas Interconnection, the scale effects caused by additional solar and wind generation provide

average external benefits of $21.84/MWh and $23.53/MWh, respectively. In the Eastern Intercon-

nection, the average external benefits are even larger – $28.25 per MWh of solar and $28.81 per

MWh of wind. Therefore, over the course of a year, the scale effects caused by adding 1,000 MW

of solar capacity provide an estimated external benefit of $44 million in the Texas Interconnection

and $57 million in the Eastern Interconnection. The annual external benefit of the scale effect

caused by adding 1,000 MW of wind capacity is $55 million in the Texas Interconnection and $67

million in the East.

As my results demonstrate, however, if the expansions in renewable capacity are combined

with a binding cap on NOX , the net changes in emissions will be substantially smaller than the

scale reduction in emissions. Therefore, the external benefits will be dramatically smaller. The last

two columns of Table 5 provide the estimates of the external benefits provided by the net changes in

40To determine the average social cost of SO2 and NOX , I calculate the simple average of the state specific estimates
of the average annual cost per ton of pollution. Alternative weighting options were considered (e.g., weighted averages
based on the share of total fossil generation in CAIR region), however, the average social cost predictions were very
similar.
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pollution (i.e., the net decrease in CO2 and the net increase in SO2). In the Texas Interconnection,

the additional solar output provides an external benefit of only $7.74/MWh and the additional wind

provides an external benefit of $13.37/MWh. In the Eastern Interconnection, the additional solar

generation provides an average external benefit of $6.98/MWh and the wind provides an average

external benefit of $8.89/MWh. Compared to the external benefits from the scale effects alone, the

external benefits from the net changes in pollution are 47% to 75% smaller.

The analytical and empirical results presented in this paper have clear policy implications. If

governments continue to subsidize specific channels of abatement – for example, supporting re-

newable electricity or energy conservation – then my findings suggest that efficiency gains could

be achieved by minimizing the resulting composition effects. The most straightforward way to

accomplish this goal would be to combine the subsidies with a tax on NOX – as opposed to com-

bining the subsidies with a cap-and-trade program. As the analytical model highlights, if a tax is

levied on a subset of pollutants, there will be no composition effect, only a scale effect. The esti-

mates in the first two columns of Table 5 reveal that the external benefits provided by renewable

capacity expansions will be quite large in this case.

In practice, however, pollution taxes have consistently received less political support than cap-

and-trade programs. If taxes are not an option, then the results presented in this analysis suggest

that cap-and-trade programs should be designed to minimize, or even prevent, the composition

effect. One clear option to accomplish this goal is to establish permit price collars – i.e., a permit

price floor and ceiling. In the economic literature, permit price collars in cap-and-trade programs

have received support for a variety of reasons. For example, in the presence of uncertainty, hy-

brid price-quantity instruments can achieve efficiency gains (Roberts and Spence (1976), Weitz-

man (1978), Pizer (2002)). In addition, previous work highlights that price collars will dampen

potentially costly permit price volatility (Burtraw, Palmer and Kahn (2010), Fell and Morgen-

stern (2010)) and can also mitigate the incentive for market participants to exercise market power

(Borenstein et al. (2014)). The analysis presented in this paper highlights an additional benefit – the

permit price floor will ensure that expansions in renewable production, or reductions in electricity
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demand, do not push permit prices below a specified level. If the permit price floor is binding, then

increases in renewable output, or reductions in demand, will not cause a composition effect.

Similarly, the expected decline in pollution permit prices caused by the addition of renewables

or energy efficiency could in theory be mitigated by dynamically updating the pollution cap. Typ-

ically, policymakers set emission caps many years into the future. For example, the CSAPR NOX

cap-and-trade program scheduled to replace the CAIR program sets NOX limits from 2015 through

2020. If subsidies induce renewable expansions during 2015, for example, then the renewable out-

put will push NOX permit prices down and lead to a composition effect that negates a large portion

of the external benefits the renewable output could have provided over the subsequent five year

period. However, had policymakers reduced the NOX cap following the introduction of the new

renewable capacity, the decline in NOX permit prices, and the resulting composition effect, would

be avoided. Of course, such a policy would be quite difficult to implement. Ideally, only the re-

newable expansions – or energy efficiency investments – that are additional (i.e., caused by the

renewable or energy efficiency subsidies) should be considered when adjusting the pollution cap.

Any renewable additions caused by the cap-and-trade program itself would simply be part of the

cost minimizing strategy to meet the cap, and therefore, should not result in reductions in the cap.

An alternative approach would be to include permit ‘set-aside’ programs with cap-and-trade

programs (EPA (2007)). With a set-aside program, governments initially hold a portion of the pol-

lution permits out of the market. As improvements in energy efficiency and increases in renewable

electricity cause scale effects that reduce the emissions of the capped pollutant, the set-aside per-

mits can be retired in proportion to the avoided emissions. By retiring the permits, there will be

no corresponding decline in the market price of permits, and therefore, no composition effect. In

practice, permit set-aside programs have received some limited use in the EPA’s cap-and-trade pro-

grams. However, instead of retiring the set-aside permits, they are often allocated to the renewable

suppliers that provided the initial scale reduction in emissions. Unless the permits are voluntarily

retired, these set-aside permits will be sold on the open market and the composition effect will still

occur.
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V Conclusion

Policies designed to expand renewable generation are being used extensively. However, they are

not being used in isolation. Frequently, renewables are subsidized in regions with overlapping

environmental policies. For example, 17 of the 25 eastern states participating in the EPA’s NOX

cap-and-trade programs have also adopted Renewable Portfolio Standards. Previous studies high-

light that, in the presence of a binding emissions cap, increasing renewable generation will have

no impact on the aggregate emissions of the capped pollutant (Sijm (2005), Pethig and Wittlich

(2009), Böhringer and Rosendahl (2010), Fischer and Preonas (2010)). However, the literature ex-

ploring the interactions between multiple policy instruments largely abstracts from the fact that the

electricity sector produces a wide variety of pollutants, many of which are not directly regulated.

In this paper, I examine how renewable subsidies interact with existing, market-based environ-

mental regulations to affect the emissions of both regulated and unregulated pollutants. I first con-

sider a simple analytical model of an electricity market that emits multiple pollutants. I show that,

if the regulated pollutants are taxed, increasing renewable output necessarily reduces emissions of

each and every pollutant. In contrast, if the regulated pollutants are subject to caps, expanding

renewable generation can inadvertently increase emissions of the unregulated pollutants.

To explore whether this unintended increase in unregulated pollution would occur in practice,

I predict how investments in new wind turbines and solar panels would interact with the EPA’s

NOX cap-and-trade program in the eastern U.S. Using hourly generation and emissions data, I

quantify how unregulated CO2 and SO2 emissions would be affected by the scale and composition

effects caused by the renewable capacity additions. My estimates reveal that the scale effect – the

reduction in non-renewable generation caused by the new renewable output – will lead to sizable

reductions in the emissions of each pollutant. However, I also provide evidence that, in the presence

of a binding cap on NOX , the increase in renewable output will cause a composition effect – in the

form of a shift away from relatively clean, natural gas generation towards dirtier, coal-fired output

– that negates much of the unregulated pollution savings achieved by the scale effect. In particular,

I find that adding renewable capacity would increase the annual emissions of SO2.
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In settings where policymakers are only able to regulate a subset of the pollutants emitted by

power plants, the results presented in this paper provide a clear argument in favor of combining

subsidies for renewable electricity – or similarly, subsidies for energy conservation – with emission

taxes, as opposed to combining subsidies with emission caps.
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Figure 1: Change in conventional generation and emissions with an overlapping emission cap.
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Figure 2: EPA CAIR states and NERC regions. Source: EPA.
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Observations Before Ozone Season
       (April 21 − April 30, 2009)

Observations During Ozone Season
       (May 1 − May 20, 2009)

Hourly Eastern Interconnection Emissions (Pre/Post Ozone Season)

Figure 6: Hourly Eastern Interconnection emissions during the 10 days before and after the
beginning of the Spring, 2009 ozone season.
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Ozone−Season Effect (Spring, 2009)

Distribution of Placebo Effects

Cumulative Distributions of Placebo Effects

Figure 7: Cumulative distributions of the point estimates of the average change in hourly
emissions caused by placebo ozone season treatments.
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Table 1: Emission Rates by Technology

Combined Cycle Gas Coal Units Other

N 535 1,911 1,029
Median CO2 Rate (tons/MWh) 0.44 1.06 0.71
Median SO2 Rate (lbs/MWh) 0.01 6.79 0.01
Median NOX Rate (lbs/MWh) 0.12 2.85 0.95

‘Other’ generators are comprised of open-cycle natural gas turbines and diesel
units. Median emission rates are equal to the 50th percentile of the unit-level,
average emission rates between January 1, 2009 and December 31, 2012.

Table 2: Annual Scale Effect of Solar and Wind Generation

Scale Effect of Solar Scale Effect of Wind

CO2 SO2 NOX CO2 SO2 NOX
Market (tons/MWh) (lbs/MWh) (lbs/MWh) (tons/MWh) (lbs/MWh) (lbs/MWh)

TRE Interconnect -0.630∗∗ -0.698∗∗ -0.884∗∗ -0.651∗∗ -1.251∗∗ -0.635∗∗

(0.003) (0.034) (0.008) (0.003) (0.037) (0.007)

Eastern Interconnect -0.722∗∗ -2.367∗∗ -1.333∗∗ -0.729∗∗ -2.552∗∗ -1.246∗∗

(0.002) (0.039) (0.011) (0.002) (0.023) (0.007)

RFC -0.796∗∗ -3.536∗∗ -1.559∗∗ -0.797∗∗ -3.717∗∗ -1.512∗∗

(0.002) (0.052) (0.014) (0.002) (0.036) (0.009)

SERC -0.736∗∗ -2.332∗∗ -1.177∗∗ -0.736∗∗ -2.443∗∗ -1.112∗∗

(0.003) (0.059) (0.015) (0.002) (0.034) (0.012)

FRCC -0.560∗∗ -1.344∗∗ -1.111∗∗ -0.557∗∗ -0.912∗∗ -0.706∗∗

(0.003) (0.037) (0.017) (0.003) (0.020) (0.009)

Point estimates represent the average annual scale effect of a MWh of renewable electricity supplied by addi-
tional solar or wind capacity. Newey-west standard errors, based on 24-hour lags, are reported. ∗ = significant
at the 5% confidence level; ∗∗ = significant at the 1% confidence level.
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Table 3: Composition Effect: Spring 2009 Ozone Season

Average Change in Hourly Emissions

NOX CO2 SO2
Market (lbs) (tons) (lbs)

Eastern Interconnect -16,809∗∗ -2,582∗∗ -90,629∗∗

(3,803) (735) (18,754)

TRE Interconnect 11 -93 -3,004
(543) (312) (5,467)

Average Change in Hourly Generation

Coal Units Combined Cycle Gas Other (Gas/Diesel)
Market (MWh) (MWh) (MWh)

Eastern Interconnect -2,361∗∗ 2,164∗∗ 197
(870) (696) (1,035)

Point estimates represent the average hourly change in emissions, or generation,
caused by the beginning of the 2009 ozone season. Newey-west standard errors,
based on 24-hour lags, are reported. ∗ = significant at the 5% confidence level; ∗∗ =
significant at the 1% confidence level.

Table 4: Net Effect of Solar and Wind Generation

Net Effect of Solar Net Effect of Wind

CO2 SO2 CO2 SO2
Market (tons/MWh) (lbs/MWh) (tons/MWh) (lbs/MWh)

TRE Interconnect -0.495∗∗ 4.068∗∗ -0.553∗∗ 2.175∗∗

(0.003) (0.054) (0.003) (0.052)

Eastern Interconnect -0.518∗∗ 4.820∗∗ -0.537∗∗ 4.165∗∗

(0.003) (0.074) (0.002) (0.043)

RFC -0.556∗∗ 4.868∗∗ -0.564∗∗ 4.436∗∗

(0.003) (0.093) (0.002) (0.062)

SERC -0.555∗∗ 4.017∗∗ -0.566∗∗ 3.552∗∗

(0.004) (0.101) (0.003) (0.075)

FRCC -0.390∗∗ 4.646∗∗ -0.449∗∗ 2.892∗∗

(0.004) (0.102) (0.003) (0.055)

Point estimates represent the average annual net change in emissions caused by a
MWh of renewable electricity supplied by the additional solar or wind capacity. ∗ =
significant at the 5% confidence level; ∗∗ = significant at the 1% confidence level.
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Table 5: External Benefits of Solar and Wind Generation

Scale Effect Only Net Effect

Solar Wind Solar Wind
Market ($/MWh) ($/MWh) ($/MWh) ($/MWh)

TRE Interconnect 21.84∗∗ 23.53∗∗ 7.74∗∗ 13.37∗∗

(0.17) (0.17) (0.20) (0.20)

Eastern Interconnect 28.25∗∗ 28.81∗∗ 6.98∗∗ 8.89∗∗

(0.15) (0.11) (0.24) (0.15)

RFC 32.51∗∗ 33.40∗∗ 8.10∗∗ 9.22∗∗

(0.17) (0.14) (0.28) (0.19)

SERC 28.20∗∗ 28.78∗∗ 9.76∗∗ 11.04∗∗

(0.22) (0.14) (0.33) (0.25)

FRCC 20.60∗∗ 19.87∗∗ 3.23∗∗ 8.61∗∗

(0.18) (0.14) (0.33) (0.21)

The point estimates represent the average external benefit provided by a
MWh of renewable electricity supplied by the additional solar or wind
capacity. Each ton of CO2 offset is assumed to provide an external benefit
of $32. Each ton of SO2 offset is assumed to provide an external benefit of
$3,982. Each ton of NOX offset by the scale effect is assumed to provide
an external benefit of $650. ∗ = significant at the 5% confidence level;
∗∗ = significant at the 1% confidence level.
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Appendix Table 1: Ozone Season Impact – Alternative
Specifications

Average Change in Hourly in Emissions

NOX CO2 SO2
Window Size (lbs) (tons) (lbs)

+/- 7 Days -19,249∗∗ -3,119∗∗ -69,045∗∗

(5,429) (1,098) (14,666)

+/- 10 Days -16,809∗∗ -2,582∗∗ -90,629∗∗

(3,803) (735) (18,7548)

+/- 14 Days -12,895∗∗ -3,743∗∗ -83,089∗∗

(4,552) (811) (15,556)

Average Change in Hourly in Emissions

NOX CO2 SO2
Time Trend (lbs) (tons) (lbs)

Linear -16,809∗∗ -2,582∗∗ -90,629∗∗

(3,803) (735) (18,7548)

Second Order Polynomial -11,716∗ -3,178∗∗ -78,545∗∗

(5,248) (759) (13,172)

Third Order Polynomial -19,814∗∗ -2,731∗ -66,515∗∗

(6,781) (1,131) (17,496)

Point estimates represent the average hourly change in emissions, or
generation, caused by the beginning of the 2009 ozone season. Newey-
west standard errors, based on 24-hour lags, are reported. In the top
three models, a linear time trend is used and the number of observations
included varies with the size of the window around the ozone season
switch. Each of the bottom three models is estimated using a +/-10 day
window and Chebyshev polynomial time trends of varying degrees. ∗ =
significant at the 5% confidence level; ∗∗ = significant at the 1% confi-
dence level.
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