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Abstract

The largest decile of commercial electricity customers comprises half of commercial sector
electricity usage. We quantify a considerable split incentives problem that exists when these
large firms are on electricity-included property lease contracts. Controlling for a rich set of
variables that may correlate with selection into contract type, we use exogenous variation in
weather shocks to show that customers on tenant-paid contracts use up to 14 percent less elec-
tricity in summer months. The policy implications are promising. Nationwide energy savings
from aligning incentives for the largest decile of commercial customers would substantially
exceed savings from fixing the split incentives problem for the entire residential electricity
sector. It is also cost-effective: switching to tenant-paid contracts via sub-metering has a
private payoff period of under one year, and public benefits are significant.
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1. Introduction

In the U.S., roughly 17 percent of commercial building occupants rent space with electricity
bundled into their monthly rent. The structure of these rental contracts implies that these com-
mercial tenants face zero marginal cost of consuming electricity. This misalignment between
tenant and landlord incentives leads to overconsumption of energy and overproduction of pollu-
tion that Pigouvian taxes are not well suited to correct (Jaffe and Stavins (1994), Gillingham
and Palmer (2014)). The welfare costs from excess energy use may be large since the commercial
sector accounts for over 35 percent of end-use electricity consumption in the U.S. Addressing this
misalignment has been acknowledged by energy economists, regulators and industry alike as a
promising area for energy savings and cost-effective pollution abatement (IBE (2011), ASHRAE
(2012), USGBC (2013)). Nevertheless, little evidence exists about the magnitude of this “split
incentives” problem in the commercial sector.

In this paper, we estimate the reduction in electricity use from switching commercial customers
on electricity-inclusive rent contracts to tenant-paid utility contracts, a distinction we refer to
throughout as “contract type”. Our results suggest that among the largest consumption firms,
tenant-paid contracts induce substantial energy savings. For the top decile of electricity users,
switching from an owner-paid to tenant-paid utility contract would reduce electricity usage by
roughly 3 percent over the course of a year and 14 percent in the summer months. These annual
savings among high consumers are comparable to popular energy conservation measures such as
home energy reports, which produce average savings of approximately 2 percent (Allcott (2011)).
Furthermore, the savings occur at times when the value of electricity is likely to be high: during
the hottest days of the year. Contract type, however, does not measurably impact consumption
decisions for the smallest 90 percent of commercial customers. This heterogeneous response is
consistent with a setting in which the bill savings from changing consumption do not cover the
adjustment costs for small firms.

Our empirical approach compares changes in electricity use in response to changes in temper-
ature across firms in each contract type. We use the staggering of electricity billing periods across

firms to generate exogenous cross-sectional variation in local weather exposure within a calendar



billing month. We combine these data with monthly bills from 1,126 commercial firms serviced
by United Illuminating, a Connecticut electric utility, between October 2007 and May 2011, and
property-level information on fixed observables including whether the tenant or landlord pays the
electric bill. The resulting panel dataset allows us to examine the differential impact of local
weather shocks on electricity use across contract types, controlling for a wide range of potential
confounders.

Our identification strategy addresses potential selection into contract type based on firm or
building attributes. In our sample, firms on owner- and tenant-paid contracts differ on some
building attributes, raising concerns about what can be learned from a simple levels comparison
of electricity use across contract types. Instead, we compare the temperature response gradient
across contract type. This permits us to achieve identification under weaker assumptions, as
we can rule out some channels of selection into contract type based on fixed firm or building
unobservables.

Under our strategy, identification may be compromised if selection into contract type occurs
based on unobservable characteristics that are correlated with the temperature response gradi-
ent. We present three pieces of empirical evidence that support our identifying assumption. First,
motivated by recent work demonstrating that the electricity response to temperature shocks mean-
ingfully differs across certain building attributes, we control for the possibility that the response
gradient is heterogeneous in observable building attributes (Novan et al. (2017)). After controlling
for interactions between temperature and attributes such as building age and industry type, our
results are unchanged. Second, we use a change to a Connecticut metering regulation, legislated
after the end of our sample period, that altered building owners’ ability to select into contract
type. This provides us an opportunity to explicitly control for the temperature response gradient
of firms located in buildings that switched contract types shortly after the change, and also test
whether they exhibit a differential response gradient (they do not). Third, we assess the effect of
potential correlations between any remaining unobservable characteristics and the treatment, as
described in Oster (2016). This places bounds on the potential bias from selection on unobserv-
ables. Each of these tests exposes our identifying assumption to an opportunity to fail, and the

results of each test support our main conclusions.



Given the size of the responsive firms, the estimated treatment effect translates into significant
benefits from aligning these split incentives. If incentives were aligned among the largest decile of
commercial customers nationwide, total energy savings would be roughly three times the savings
produced by solving the split incentives problem for the entire U.S. residential electricity sector.!
The magnitude of our results and the relative size of large commercial firms are the primary
factors leading to this potentially surprising result. Though the number of commercial customers
affected by the split incentives problem is small relative to residences, these customers use much
more energy. Thus, addressing the commercial split incentive problem requires a fraction of
the contact points (e.g. sub-meter installations) relative to the residential sector, while likely
leading to greater energy savings. Our estimates imply greenhouse gas reductions of between
615-1200 thousand tons of COgy per year, or (to give a sense of scale) roughly 3.3 to 6.6 times the
average annual savings from yearly Weatherization Assistance Program retrofits. These savings
are achievable at a relatively low cost. Retrofitting units with sub-meters to allow switching to
tenant-paid utility bills amongst the highest decile of electricity users has a payback period of less
than one year.

This work makes four main contributions to the academic literature and environmental policy
discussion. First, compared to the residential setting where a growing literature points to the
potential and limitations of energy efficiency and contracting solutions (Gillingham et al. (2012),
Hassett and Metcalf (1999), Fowlie et al. (2015), Elinder et al. (2017)), little is known about
how contracting influences commercial users. We provide a commercial counterpart to existing
residential estimates on the split incentives problem. Second, our identification strategy makes
several advances towards credibly estimating the magnitude of the split incentives problem. The
response gradient, temperature-characteristic interactions, contract switcher controls, and Oster
bounds each provide support for the identifying assumption and extend the existing literature
on split incentives. Third, our results reveal substantial heterogeneity in firm responsiveness to
contract type and point to the importance of looking beyond average treatment effects. Lastly,

our results suggest a targeted prescriptive policy of tenant-paid contracts would be a net beneficial

"We describe the basis for this claim in Section 5.2. Under what we consider to be an extremely conservative
combination of assumptions, the savings ratio is still greater than one.



greenhouse gas abatement strategy.

The rest of the paper is organized as follows. Section 2 reviews the academic literature and
discusses our empirical setting. Section 3 describes the data. Section 4 discusses identification
and presents our empirical specifications. Section 5 presents our empirical results and explores

policy implications. Section 6 concludes.

2. Background

Separating the party who pays for energy from the one making decisions about usage has been
frequently cited as creating incentives for energy over-consumption or underinvestment in energy
effiency (Murtishaw and Sathaye (2006), Blumstein et al. (1980)). One frequently studied split
incentive principal agent problem takes the form of a tenant-paid contract and underinvestment
in energy efficiency by the landlord. If tenants are not able to perfectly observe efficiency levels
and thus are unwilling to pay a rent premium for energy efficiency, owners may forgo energy
conservation investments (Davis (2012), Myers (2014)). In contrast, our focus is on the split
incentive problem arising when energy bills are bundled into the monthly rental contract. When
a building occupant rents space and does not pay for their monthly energy bill, they face a zero
marginal cost for energy use, resulting in little incentive to consider the impact of their energy
consumption decisions. Given that about 50 percent of office and retail buildings are tenanted, or
non-owner-occupied, the commercial sector has the potential to be a primary contributor to this
agency problem (EIA (2012)).

A reduction in the incentive to conserve may lead to energy overconsumption along multiple
dimensions. In the commercial sector, many buildings are over-cooled in the summer months,
leading to an increase in electricity consumption of up to 8 percent (Derrible and Reeder (2015)).
Equipment and electronics usage may also increase if there are poor incentives to conserve.
Sanchez et al. (2007) find that office equipment and electronics - such as computers, personal
space heaters and fans - account for up to 20 percent of annual building-level electricity con-
sumption. Basarir (2010) notes that, in retail settings, open doors increase consumption by up
to 9 percent. Finally, there may simply be inattention to electricity decisions in the commercial

customer population. This explanation is consistent with Jessoe and Rapson (2015), who show



that commercial customers are price inelastic when exposed to time-varying electricity prices.

While the engineering literature has identified several channels through which split incentives
may affect commercial sector consumption, a gap remains in our understanding of its precise
magnitude. One exception is Kahn et al. (2014), who find that energy consumption by tenants who
pay their own energy bills is 20 percent lower compared to owner-paid units. However, as noted by
the authors, this estimate reflects the effect of both contract type itself, and selection into contract
type and buildings based on preferences for energy services. In the residential sector, the current
consensus is that the split incentive effect on aggregate consumption is likely modest. Levinson
and Niemann (2004) find that energy bills are 0.7 percent higher when apartment dwellers do not
pay for heat, and Gillingham et al. (2012) find occupants who pay for heating are 16 percent more
likely to change their heat settings at night.? Note that aligning financial incentives does not
a priori guarantee that agents will exhibit price-sensitivity in their decisions. In the residential
electricity setting, consumers have been shown to be inattentive to their electricity bills (see, for
example, Jessoe et al. (2014) and Ito (2014)). This is potentially a result of the relatively small
financial rewards at stake.

We evaluate our research questions within the jurisdiction of United Illuminating (UI), an
investor-owned electric utility in Connecticut servicing customers across 17 counties. Figure 1
shows its service territory. Most Connecticut commercial customers heat their units with natural
gas or fuel oil rather than electricity (EIA (2012)), leading us to hypothesize that electricity use
will be most responsive to weather conditions in the summer months, when air-conditioning use
is high.

The regulations surrounding metering in Connecticut make it an advantageous setting in which
to study the split incentives problem. To get a sense for the regulatory landscape, consider the
owner of a multi-tenanted building. Monitoring each tenant’s individual electricity use would
require the installation of a sub-meter. However, prior to the summer of 2013 the state prohibited

the retrofitting of commercial and multi-family buildings with sub-meters. As a result, only

2Another dimension to the principal-agent problem is less than efficient turnover from oil-fired to gas-fired
boilers for residential heating in the northeastern U.S (Myers (2014)). This outcome is consistent with asymmetric
information over heating costs when tenants pay for heat. Inefficient turnover led to 37 percent higher annual
heating costs in the 1990-2009 period.



buildings initially constructed with sub-meters in place could charge individual tenants for energy
consumption.? In all other buildings electricity consumption was monitored at the building level,
and thus tenants signed owner-paid contracts. Since our analysis focuses on the time period
2007 to 2011, the presence of sub-meters in buildings is predetermined from the perspective of
current owners and tenants. While tenants were still able to choose buildings based on electricity
contract type, doing so limited their choice set to buildings retrofitted with a sub-meter at the
time of construction, an implicit cost.

In 2013, new legislation passed by the Connecticut General Assembly eliminated the sub-
metering prohibition (Hartford Business Journal (2013)). While we cannot directly test the effect
of this change on electricity use due to the fact that it post-dates our electricity billing sample, the
legislative change enables us to gain further insights into selection on contract type based on firm
and building-level energy preferences. We obtain data on contract “switchers” in the post-2013
period, where switchers are defined as firms located in buildings that changed their contract type
from owner-paid to tenant-paid utilities, or vice versa. Altogether 65 firms were located in one of

these buildings.
3 Data

We combine three data sets to form a panel of of 40,962 observations from 1,126 firms. The
first source is monthly billing data provided by UI that reports account-level monthly electricity
consumption (in kWh), peak monthly throughput (in kW), and monthly expenditure. These
data also contain information on the industrial classification number - or NAICS code - of each
account. The second source is the CoStar Group, a commercial-sector multiple listing service and
database that includes property-level information on utility contracts and hedonic characteristics,
such as year of construction, number of stories and building size. Third, we obtained average
daily temperature data from the National Oceanic and Atmospheric Administration (NOAA).

Table 1 presents sample summary statistics on usage, location and industry by contract type.

3Several states have historically banned utility sub-metering, primarily for consumer protection reasons. The
main concern has been that owners would overcharge tenants for sub-metering services. States that have banned
sub-metering include California, New Jersey, Massachusetts, and New York (Allen et al. (2007), NJAA (2005),
Cross (1996)). Other states such as Arizona and Georgia have allowed sub-metering to occur in a legal gray zone,
leaving owners open to lawsuits for charging sub-metering fees (Treitler (2000)).



The predominant share of accounts are located in office buildings (72 percent), followed by in-
dustrial buildings (22 percent), and then by retail and flex buildings, which combine office and
retail functions (6 percent). In our sample, about 84 percent of firms pay their own electricity
bill. The average customer (across contract types) spends about $675 a month on electricity; the
average building is approximately three stories; and the primary industry is ‘Finance, Real Estate
and Management’, which makes up about 50 percent of the sample among both contract types.
The sample in both contract types is also evenly distributed regionally, with about 30 percent of
observations in central cities, and the rest located in more suburban areas.

In our empirical work, weather is measured as the number of cooling degree days (CDD) and
heating degree days (HDD) in a zip code billing-month. To arrive at this observational unit, we
begin by using daily temperature data collected from ten local weather stations to construct daily
CDD and HDD at each weather station. CDD are obtained by subtracting 65 from the average
Fahrenheit temperature on a given day with temperatures above 65, while HDD are obtained by
subtracting the average Fahrenheit temperature on a given day from 65 on days with temperatures
below 65.4 These daily weather station measures are used to compute daily zip code level weather.
We use inverse distance weighting relative to zip centroids, and then sum within a billing-month
in each zip code to obtain monthly CDD and HDD. Finally, for ease of coefficient interpretation,
we divide cumulative CDD and HDD in each billing period by total days in that billing period to
arrive at average daily CDD and HDD by billing month.

This observational unit provides both cross-sectional and temporal variation in weather. One
source of cross-sectional variation arises from temperature differences across the 32 zip codes in
UT’s service territory. This is made clear in Figure 2 which displays the daily temperature by zip
code between October 2007 and May 2011. Despite the relatively small region, there is visible
cross-sectional variation in daily temperatures with summer temperatures varying between 5 to
10 degrees across zip codes. Variation in our weather variable also occurs because of differences
in billing cycles - which denote the start date and end date of a billing period - across firms. In

our sample, there are 16 unique billing cycles, where firm assignment to a billing cycle is based

40DD measure demand for space cooling services, such as air conditioning, since cooling demand increases as
temperature rises above 65. HDD measure demand for space heating services since heating demand increases as
temperature falls under 65.



on geography. The staggering of billing cycles throughout a month provides a second source of
cross-sectional variation in weather due to the fact that a hot day may be included in different
billing “months” for firms on different billing cycles.

The assignment of billing cycles based on geography raises the possibility that they may
be correlated with weather and contract type. We investigate this by testing if a systematic
relationship between bill cycle and weather exists. A regression of weather on bill cycle shows
that that the sixteen billing cycles are neither jointly nor individually significant in explaining

5

cooling degree days or heating degree days.® Nevertheless, our empirical approach explicitly

addresses this concern by conditioning on billing cycle.

4. Empirical Framework

Earlier empirical work on split incentives in the commercial energy setting assumes that the
mechanism by which firms are assigned to owner- or tenant-paid utility contracts is independent
of fixed firm characteristics. We relax this assumption and control for the possibility that firms
may select into contract type based on contract attributes. Our research design focuses on one
margin where a split incentives problem may be observed - cooling during summer months -
and our empirical approach exploits within-firm variation in CDD that is generated from the
staggering of billing cycles. This allows us to test if the relationship between temperature and
electricity use varies systematically across utility-included and excluded contract types.

In this section, we begin by describing a simple levels comparison of electricity use across
firms on owner- and tenant-paid contracts, and show that this approach will likely lead to biased
estimates of the principal-agent problem. Next, we detail the empirical approaches that we deploy,
the coefficient estimates that these retrieve, the identifying assumptions upon which our empirical

approach hinges, and two robustness tests that we implement.
4.1 Average Treatment Effects: Levels Comparison

To examine the split incentives problem, we begin by comparing overall electricity use across firms

on owner- and tenant-paid contracts conditional on a number of rich time controls using OLS,

5See Appendix section A.1.



Yie = a+ B1Co + BoHy + 0T + mit + ¢ + € (1)

The outcome variable is the natural log of electricity use for firm 7 in billing month ¢. The regressor
of interest, T}, is an indicator variable that takes on a value of 1 if firm 4 is on a utilities-excluded
or tenant-pays contract, and 0 if it is on a utilities-included or owner-pays contract. The variables
C,+ and H,; are average daily cooling and heating degree days for a firm assigned to billing month
t and located in zip code z. We further condition on billing month fixed effects, denoted by ~,
and firm-specific time trends 7;.

Our coefficient of interest, 6, will reflect the average effect of contract type on monthly elec-
tricity use if assignment to a tenant-paid or owner-paid contract is independent of potential
outcomes. In our setting, this identifying assumption seems untenable, since the mechanism by
which firms and buildings are assigned to contract type is likely correlated with fixed firm or
building attributes that also determine electricity use. Tenants may sort into contract type based
on electricity use, the elasticity of their electricity demand, or firm-specific attributes. Another
possibility is that the presence of sub-meters in a building, and hence the ability for owners to
implement tenant-paid contracts, may be co-determined with other fixed building attributes. In
our setting, the decision to construct a building with or without sub-meters may coincide with
other construction decisions such as insulation or window quality that affect electricity use. For
these reasons, buildings and firms on tenant-paid contracts likely differ from those on owner-paid
contracts in ways that affect electricity use. Failure to account for selection into contract type
may result in a biased estimate of 6.

To empirically explore whether selection on fixed firm and building attributes may confound
the estimation of equation (1), we compare firms on owner- and tenant-paid contracts across
a number of observables that we hypothesize may be related to contract type. Tables 1 and 2
report mean characteristics for firms on tenant- and owner-paid contracts, as well as the t-statistic
associated with the difference in means. Motivated by empirical specifications that focus on the
principal-agent problem among all firms and only the largest electricity users, we present these
comparisons for all firms in our sample, Table 1, and firms in the top electricity consumption

decile, Table 2. As shown in Table 1, when we focus on the full sample, the covariates are
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balanced along the rich set of covariates we observe. However, a comparison of means across the
top decile of electricity users reveals that firms on owner- and tenant-paid contracts differ along a
number of observables, including building height and industry type. These balance statistics cast
doubt on an empirical approach that relies on a levels comparison in electricity use across firms

on different contracts, and lead us to forgo the formal estimation of equation (1).
4.2 Average Treatment Effects: Temperature Gradient

We propose an empirical approach that controls for the possibility that firms and buildings on
owner- and tenant-paid contracts may be systematically different in fixed attributes that also
affect electricity use. We begin with the hypothesis that if a split incentives problem exists, then
it should be observed in differences in cooling across owner- and tenant-paid contracts. We test
this hypothesis by evaluating how electricity use differs in response to a 1 cooling degree day
increase across firms on an owner- versus tenant-paid contract, controlling for firm fixed effects
and weather.

To evaluate the differential effect of a CDD on electricity use across contract type, we estimate

a fixed effects model using OLS,
Yit = B1C + BoH e + 01T X Cop + 02T X Hop + Ly + mit + v + v + €4t (2)

In this specification, the indicator variable for whether tenant ¢ pays its own electric bill is in-
teracted with each of the weather variables, T; x C,; and T; x H,;. Importantly, this estimating
equation conditions on account fixed effects, ;. This allows us to control for all fixed firm and
building characteristics including those that affect electricity use and may systematically differ
across contract type. We also condition on bill length, L;, defined as the number of days in a
billing month, to account for differences in weather attributable to variation in bill length across
billing months.

The coefficient, 67, reflects the differential effect of temperature increases on electricity use
across firms on owner- and tenant-paid contracts. A natural interpretation of #; is the change
in demand for air conditioning across contract type in response to warmer temperatures, holding

constant the existing building stock. To estimate this treatment effect, we exploit variation in
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CDD generated from the staggering of billing cycles, and compare how a firm on an owner-
versus tenant-paid contract responds to this variation netting out fixed firm characteristics. This
approach allows us to account for fixed building and firm attributes systematically correlated with
contract type and electricity use.

Nevertheless, identification of the treatment effect still rests on a key assumption: the response
of electricity use to CDD differs only by unobservables uncorrelated with contract type. When
compared to the levels regression in equation (1), the requirements for identification are less
onerous. This is because equation (2) allows for selection into contract type based on fixed
unobservables. A violation would only occur if attributes systematically correlated with contract
type also exhibit a temperature-dependent impact on electricity use. A second advantage of
our approach is that it explicitly accounts for the possibility that the electricity response to
temperature shocks differs significantly across fixed building attributes (Novan et al. (2017)).
Our empirical approach only breaks down if fixed building attributes that affect electricity use
in a temperature-dependent way are also systematically correlated with contract type. In our
setting, this would occur if, for example, building age was systematically correlated with contract
type, and the electricity response to temperature differed across building vintage.

To examine the plausibility of our main identifying assumption, we augment equation (2) to
account for the possibility that building attributes that differ systematically across contract type
may also impact electricity use along a temperature gradient. Our main estimating equation thus

conditions on interactions between weather and a number of building and firm attributes,
Yie = B1Co + PoHo + 01T X Cop 4 02T X Hyp + X X [Copy Hot) + Le + it + ¢ + v + it (3)

The term 1 X; X [Ct, H.¢], denotes a vector of building and firm attributes interacted with heating
and cooling degree days, where X; includes indicator variables for building type (retail, office,
etc.), firm NAICS code, quartile of building vintage and building stories.

Our testable hypothesis is that if building attributes confound the temperature response gra-
dient then our coefficient estimate on contract type, 81, will be sensitive to the inclusion of in-

teractions between temperature and building/firm covariates. If the coefficient estimate remains

SWe show in Appendix Table A2 that the results are not sensitive to how the characteristic variables are
specified, e.g. in levels, quartile dummies, tertile dummies etc.
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unchanged after conditioning on these interaction terms, then this provides evidence to support

our main identifying assumption.
4.3 Conditional Average Treatment Effects: Temperature Gradient

A central focus of this paper is whether the size of the split incentives problem varies substan-
tially across firms. One form of heterogeneity in the response to contract type may arise based on
electricity use, since relatively larger users of electricity may devote a larger share of their budget
to electricity expenditures. To empirically examine this form of heterogeneity, we estimate con-
ditional average treatment effects for firms in different deciles of average monthly electricity use.

To implement this, we augment equation (3) and estimate,

Yit = B1d(Cat X 1ig) + Bad(Hzt x 1ig) + 014(Ti x Cup X 1iq) + O24(T; x Hy x 1ig)

+PaX; X [Cop X Lig, Hot X Lig) + Le +mit + v + v+ (4)

This estimating equation now includes a vector of indicator variables denoted by 1;; that are set
equal to 1 if tenant ¢ has electricity demand in decile d (i.e. d ={1,...,10}), and zero otherwise.
These indicator variables are interacted with the weather variables, and the treatment effect of
interest. This allows to us to separately estimate, for each decile of electricity use, the differential

effect of a CDD on demand for electricity across contract type.
4.4 Robustness

To examine the plausibility of our main identifying assumption, we implement two novel robust-
ness tests. The first makes use of a regulatory change allowing buildings to switch contract type
and tests if selection remains an empirical concern. The second applies a new technique proposed
by Oster (2016) to bound our estimated treatment effects.

Our first robustness test takes advantage of a policy change to sub-metering regulations.
Within our sample period, a ban on sub-metering retrofits in Connecticut made selection by
customers and building owners along contract type very costly, if not impossible. For example,
customers desiring attributes of a centrally-metered building may have preferred to pay their

own electricity, and landlords may have preferred to offer tenant-paid energy utilities. However,
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retrofitting buildings with unit-level electricity meters - a prerequisite for tenant-paid contracting
- was not permitted. In 2013, about two years after our sample period ended, this restriction was
lifted and landlords were allowed to retrofit buildings with sub-meters.

We use building-level tenancy contract information collected a year and a half after the Con-
necticut legislative change to assess whether sorting based on energy consumption preferences
might have occurred once sub-metering retrofits were allowed. Since the legislative change al-
lowed a more flexible re-matching of tenants into contract type, this presents an opportunity to
observe which buildings switched and to directly examine whether controlling for them changes

our baseline results.”

Under the null hypothesis of “no selection,” our estimated treatment ef-
fect should be unchanged after conditioning on the identity of firms switching contract types by
interacting indicator variables for these “switchers” with CDD and HDD.

Our second test uses a new technique proposed by Oster (2016). This method requires the
assumption that the relationship between treatment and unobservables can be recovered from
the relationship between treatment and observables. If this is the case, movements in the coef-
ficient of interest and R-squared levels from the inclusion of control variables inform us about
selection on unobservables. Building on Altonji et al. (2005), Oster (2016) points out that under
the plausible assumption that observable controls share covariance properties with unobservable
variables, omitted variable bias is proportional to coefficient movements, but only if these move-
ments are scaled by changes in R-squared. An ideal scenario in this context is one in which the
treatment coeflicient of interest changes very little as new covariates are added, and the regression
R2 approaches its maximal possible value, after accounting for measurement error (Gonzalez and
Miguel (2015)). In this case, the large R? suggests there is little variation remaining to bias the
coefficient. The Oster approach yields a consistent estimator for the bias-adjusted coefficient of

interest, or an identified set formed by the treatment effect in the fully controlled regression, and

the bias-adjusted effect. We retrieve the Oster bounded set in a post-estimation procedure and

"Roughly six percent of customers switched contract types by early 2015, with 34 owners moving to a tenant-paid
contract and 31 transitioning to an owner-paid contract. Switches to owner-paid contracting were not limited prior
to the sub-metering policy change, and there are several reasons why owners may switch to owner-paid contracting
(see for example Levinson and Niemann (2004)). Importantly, these switches may also be related to the policy
change itself - owners who wish to upgrade or reconfigure their building metering infrastructure may need to
master-meter tenants for a transition period. We control for both types of switches in our empirical specifications.
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present it in our discussion of the results.

5 Results and Discussion

The reduced form relationship between contract type, firm size, temperature and electricity con-
sumption is presented in Figure 3. It plots electricity consumption against average temperature
within one-degree bins, across both contract types, for the bottom nine deciles of firms in panel
(a), and the top consumption decile in panel (b). Superimposed on each scatter plot is a lowess
fit of consumption on temperature. This figure provides a preview to our formal regression results
and points to three interesting patterns of firm behavior. First, as shown in panel (a), on average
there is almost no discernible difference in consumption by contract type across the distribution
of temperatures in the bottom nine consumption deciles. Second, in the top consumption decile,
shown in panel (b), we observe a significant divergence in usage across contract types, with firms
under owner-paid utility contracts exhibiting higher usage, relative to tenant-paid firms. Third,
this difference in usage becomes more pronounced when air-conditioning demand rises. Consump-
tion levels begin to diverge more sharply once temperature increases beyond approximately 65 F,
the temperature at which demand for cooling typically begins (EPA (2014)).

Table 3 presents our formal regression results. Column (1) shows the effect from the estimation
of equation (2), a regression comparing the differential impact of a weather shock on firms with
a tenant-paid contract type relative to an owner-paid contract, controlling for firm and billing-
month fixed effects and firm-specific time trends. When looking across all firms, we find there
is no difference in the effect of weather shocks on consumption across contract type. In the
remainder of Table 3, we report results that include tenant-paid contract interactions with CDD
and HDD for each consumption decile. Column (2) reports results from the estimation of the
conditional average treatment effects analog of equation (2), and columns (3)-(5), which examine
the robustness of this result to potential confounding factors, report results from the estimation
of equation (4). Column (3) conditions on the interaction of CDD and HDD with building and
industry type; column (4) adds interactions of CDD and HDD with building vintage quartiles;

and column (5) adds controls for the differential effect of temperature shocks among switchers.®

8In Table A2, we also include building storey interactions with cooling and heating degree days; the results are
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Our results indicate that a split incentives problem leads to overconsumption of energy among
the top decile of electricity consumers. This effect is quantitatively and qualitatively robust to
several specifications, suggesting that firms on a utilities-included contract exhibit a different
dose response function to weather than firms who pay their own utility bills. Focusing on our
preferred specification in column (5), we find that a tenant-paid contract leads to about a 1.4
percent decrease in kWh per average daily CDD for the top decile of electricity consumers. This
translates into about a 3 percent decrease in electricity use among the top decile of users. In
contrast, contract type does not statistically impact consumption decisions for the other 90 percent
of commercial firms. This large divergence in response to contract type based on firm size points
to a first source of heterogeneity in response to treatment, and potentially large savings from the
targeted deployment of a policy instrument.

A second source of heterogeneity results from seasonal variation in the treatment effect. We
find that the split incentive can lead to significant increases in electricity use but only during
the hot summer months. In the summer months, switching from an owner to a tenant-paid
contract would reduce monthly electricity consumption by up to 14 percent. The summer response
is consistent with a framework in which demand for electric air conditioning during these hot
months drives the divergence in the temperature response gradient across owner- and tenant-paid
contracts.”

Though contract type only influences electricity choices for a narrow set of customers during a
concentrated period of time, restructuring contract type has meaningful implications for aggregate
electricity usage. This is because the responsive firms are the largest electricity consumers and
are quite sensitive to hot temperatures. A policy that switched the largest decile of electricity
consuming firms from an owner to tenant-paid contract would result in annual electricity savings
per firm of roughly 19,000 kWh. Comparing these savings to the total quantity of electricity
consumed by all commercial firms in our sample, we find that this policy change would lead to a

1.4 percent reduction in total electricity use.

qualitatively unchanged and the point estimate on our variable of interest increases. Table A2 also shows that our
treatment effect is not sensitive to the functional form of the building characteristic controls.

9The coefficients on HDD (not reported) are not statistically significant. Since most firms in Connecticut use
natural gas or fuel oil for heating, this is not surprising.

16



We also estimate the effect of contract type on electricity expenditure by estimating our
preferred conditional average treatment effects specification with log monthly bill as the dependent
variable; results are shown in column (6) of Table 3. For the top decile of electricity consumers,
the estimated treatment effect is a 1.2 percent decrease in the monthly bill per CDD. The value
of total bill savings among these high consumers is approximately $310 per summer month. On
average, this represents a 10 percent reduction in electricity expenditure.

To further gauge the robustness of our results to potential selection on unobservables, we
apply the bounds analysis proposed by Oster (2016). We make an equal selection assumption,
which implies that any residual omitted variable bias is a function of: (i) the treatment coefficient
before and after the inclusion of covariates; (ii) R-squared values before and after the inclusion
of covariates; and (iii) the maximum theoretically possible R-squared, namely from a regression
on consumption and all possible observable and unobservable controls. This maximum R-squared
may be less than 1 if there is measurement error.

Given our rich set of controls, the equal selection assumption is likely conservative, as it as-
sumes that any remaining unobservables are at least as important as the observables in explaining
the treatment (Oster (2016), Altonji et al. (2005)). Table 4 reports the identified set estimates
from two different specifications with log usage and log bill as the dependent variables, respec-
tively, corresponding to the fully controlled specifications reported in columns (5) and (6) of Table
3.1 As shown in this table, we continue to detect a split incentives effect after accounting for
any remaining selection on unobservables. A tenant-paid contract induces at minimum monthly

electricity and bill savings of 0.7 and 0.6 percent per CDD, respectively.'!
5.1 Generalizability

There are roughly 18 million commercial electricity customers in the U.S. and 5.6 million com-
mercial buildings ((EIA (2017), EIA (2012)). In this section, we explore the similarity of the
subpopulation under study here to the full population of commercial sector tenanted buildings in

the U.S. Understanding if our estimates apply to the broader population of large commercial users

0T hese set estimates assume that the maximum possible R? is 0.98, given the estimated 2 percent measurement
error in electricity meter readings (Dong et al. (2005), Reddy et al. (1997)).

1 All the energy and bill savings ranges reported in the following sections are based on these Oster identified set
estimates.
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provides insights into the potential energy savings from restructuring electricity contracts from
owner- to tenant-pay. To demonstrate the broader relevance of our results, we proceed in three
steps. First, we make use of a representative data set of national commercial building attributes
to show that, along important observables, the data source used in our analysis is representative
of building attributes throughout the U.S. Second, we focus exclusively on the database used in
our analysis, and illustrate that the distribution of attributes for commercial buildings in Con-
necticut is similar to those in the broader U.S. Third, we then compare contract types and energy
intensity in commercial buildings in Connecticut to those across the U.S. We use these contract
type statistics in Section 5.2 to estimate the energy savings implied by our treatment effect.

In the first step, we demonstrate that the building database used in our analysis is a represen-
tative sample of building attributes in the U.S. Our empirical sample uses data on contract type
and building attributes collected from the CoStar group. An advantage of the data collected by
the CoStar group is that it includes buildings throughout the U.S., totaling about 97 percent of
tenanted buildings. We compare three important building characteristics in the CoStar dataset
- building height, age and size - to the Energy Information Administration’s Commercial Build-
ing Energy Consumption Survey (CBECS), a nationally representative data set on attributes in
both owner and tenant occupied commercial buildings. The CBECS and CoStar datasets are
very similar in building height and vintage. While the average CoStar building is larger than
the CBECS average, this may be representative of the larger size of leased buildings compared
to owner-occupied buildings (EIA (2012)). These similarities in observables, along with the fact
that the CoStar database is reflective of leased commercial buildings in the U.S., lends confidence
to the national representativeness of the CoStar data.

Second, we show that within the CoStar data there is strong overlapping support in the
distributions of measurable building characteristics between Connecticut and the rest of the United
States. The overlapping support of building characteristics can be seen in Figure 4. Ideally, we
would compare attributes of buildings in the top 10th percentile of electricity usage in Connecticut
to those in the U.S. This is not feasible since CoStar does not collect electricity use as a variable.
Instead we display the full distribution for both Connecticut and the U.S. of building attributes

that we hypothesize are highly correlated with electricity use: square feet, number of stories,
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and year of construction. For all three variables, significant overlap exists, despite some apparent
differences (e.g. Connecticut has a lower proportion of very small buildings). As we discuss below,
differences between the Connecticut sample and the broader population imply that the commercial
split incentives problem is potentially even larger in the rest of the U.S. than in Connecticut.
Finally, comparing the composition of contract types and energy intensity in Connecticut to
the rest of the U.S. once again leads to the conclusion that the split incentive problem is likely
at least as large outside of Connecticut as it is within Connecticut. Approximately 34 percent
of commercial, non-government floorspace in New England is leased, as compared to 39 percent
nationwide (EIA (2012)).'2 The CoStar database reports contract type for commercial lessees
nationwide, differentiating between contracts that transmit price incentives to tenants and those
that do not. In our Connecticut sample, about 15 percent of commercial lessees are on owner-

13 With respect to energy intensity, New

pay contracts, as compared to 25 percent nationwide.
England is the least energy-intense region in the nation when measured by kWh per square foot
of commercial building space (EIA (2012)). When we condition on buildings in which owners pay
for electricity, New England is still well below the national average: 11.6 kWh per square foot in
New England versus 14.4 nationwide.

Proportionally, less commercial floorspace is rented in New England than nationwide; a higher
proportion of commercial renters are on owner-pay contracts in the rest of the U.S.; and the energy
intensity per commercial square foot is higher in regions outside of New England. Thus in terms
of the magnitude of the potential split incentives problem in the commercial segment, it is likely

to be larger per square foot of commercial building space in the rest of the country than it is in

Connecticut.

12EIA’s Commercial Building Energy Consumption Survey (EIA (2012)) publicly reports this variable at the
regional level, rather than by state.

3The nationwide figure is even larger if we include contracts with a prorated utility payment for all building
occupants, whereby tenants pay a weighted average of the building’s utility bill based on the square feet occupied.
In this contractual arrangement, tenants do not pay for the marginal cost of their energy use and large consumers
benefit by paying less than their share of utilities. Conservatively, we categorize these as ‘owner-paid’ in our
paper, though only about 3 percent of tenants are on a prorated contract in our sample. Nationwide, about 20
percent of tenant contracts include a prorated utility payment. In Section 5.2 we treat these figures under the most
conservative assumptions.
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5.2 Quantifying Benefits from Aligning Split Incentives

Under conservative assumptions, restructuring rental contracts for the largest ten percent of
commercial firms nationwide would produce energy savings roughly three times those achieved
from restructuring rental contracts for all residential users who don’t pay for their utilities. This
conclusion is derived from the following calculation. There are 130 million residential electricity
customers in the U.S., of whom 10.4 million rent dwellings with utilities included (EIA (2009)).
Assuming they conserve 0.7 percent of their electricity when exposed to a non-zero price (Levinson
and Niemann (2004)), total residential savings are 142 million kWh per year. By comparison, there
are approximately 18 million commercial sector electric customers in the U.S. (EIA (2017)), 39
percent of which rent their building space (based on the share of tenanted buildings in the U.S.
in ETA (2012)). Suppose 25 percent of those (1.74 million) have an owner-paid utilities contract.
The top consumption decile, 174,000 customers, save a total of 411 gigawatt-hours per year (1.4
percent based on our preferred empirical estimates) from a switch to tenant-pay contracts. This
amounts to 289 percent percent of the residential sector analog. Under much more conservative
assumptions, this number falls to 177 gigawatt-hours per year, or 125 percent of the residential
sector analog.'?

Addressing the commercial split incentives problem has relatively high benefit-to-cost. Using
data on the costs of sub-metering, we estimate the payback period from sub-metering individual
units and shifting to a tenant-paid contract. Sub-meter costs range from $250-$1000 per unit
(Pike Research (2012), White (2012), Millstein (2008)). Given the average estimated annual bill
savings of $970 (the average of the bill savings obtained using the Oster identified set estimates)
and assuming a unit-level sub-meter cost of $625 (the average of the sub-meter cost ranges cited
above), the payback period is less than one year, even after allowing for installation costs. This

is well below the payback threshold for most firms’ energy conservation investments (Anderson

MWe reduce the fraction of renters from 39 percent to 36 percent to reflect the share of tenanted floor space,
rather than the share of tenanted buildings (EIA (2012)), use the average electricity use across all large firms (not
just those on owner-pay contracts, who use more electricity), and adjust our treatment effect estimate down by one
standard deviation. These changes are multiplicative and thus result in an extremely conservative estimate. As
mentioned in the previous section, it is likely that the base case comparison to the residential sector understates the
relevance of our results to the U.S. commercial sector as a whole, so the conservative estimate should be interpreted
as a lower bound.
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and Newell (2004)).> With a unit- or firm-level sub-meter cost of $625, a cost which would
be incurred up-front, and an average annual treatment effect of 19,000 kWh saved among high
consuming firms, the cost effectiveness is 3.3 cents per kWh after the first year, 1.6 cents per kWh
after two years, and 1.1 cents after 3 years, assuming the annual electricity savings persist at the
same level.

To calculate the reduction in external damages from a switch to tenant-paid contracts, we
convert energy savings into avoided CO2 and PMs 5 emissions, and then monetize the reduction
in emissions.'® To quantify CO2 we use the Environmental Protection Agency’s eGRID database
which provides 2009 emission rates for the New England subregion, measured as tons emitted per
MWh of electricity produced.!” The energy savings translate into COq savings of between 615 to
1200 thousand tons per year. To give a sense of scale, this is between 3.3 to 6.6 times the average
annual savings achieved from yearly Weatherization Assistance Program (WAP) retrofits.!® The
PMs 5 emission rates estimate is obtained from Connors et al. (2005). Marginal damage esti-
mates for PMy 5 come from Muller and Mendelsohn (2007), and marginal COy damages are from
IWGSCC (2015).

The upper and lower bound estimates for avoided pollution-related external costs are presented
in Table 5. As shown in columns (1) and (2), the per firm value of avoided damages ranges from
$102 to $204. In columns (3) and (4) we add to this the estimated bill savings of $677 to $1265 per
firm-year. Using this measure, the annual firm-level social benefit of switching from an owner- to
tenant-paid contract is between $779 and $1469. Finally, in columns (5) and (6) we measure the
value of the energy savings using the avoided marginal cost of electricity (in place of bill savings).

We use this approach to net out fixed costs. Fixed costs are not avoided costs in this setting,

'5Tn most states sub-meter system costs can be recovered through surcharges on tenant utility bills. This enables
owners to recover their investments costs. If the owner’s surcharge doesn’t recover the full value of the savings, the
payback period may be longer, but our estimates would still represent a social payback period.

6We do not include damages from NO,, and SO; emissions, given regional and federal regulations in place during
our sample time frame. Assuming the emissions caps for these regulations were binding, a reduction in electricity
consumption would not reduce aggregate emissions but reallocate them to a different source. While CO2 emissions
were also regulated through the Regional Greenhouse Gas Initiative from 2009 onwards, the early phase of this
program did not have a binding cap (CRS (2017)).

1"The eGRID database is available at the EPA’s website at www.epa.gov/energy/egrid.

8 An average of 175,000 WAP retrofits are performed every year, which save approximately 1.06 tons of COx
per household per year (Fowlie et al. (2015), DOE (2017), EIA (2010)). These retrofits therefore save 186,000 tons
of CO3 every year.
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since they will be recovered by the utility from other customers under the cost-plus regulatory
structure in Connecticut. Our measure of avoided marginal cost is the average hourly locational
marginal price for Connecticut over the sample period, $59.42.1% Total social benefits using
avoided marginal costs are between $676 and $1346. Given that the average cost of a sub-meter

is $625, sub-metering retrofits are likely net beneficial from a social perspective.
5.3 The Non-Response of Most Commercial Firms

While we estimate that contract type has a sizable effect on electricity use for the largest firms,
one unanswered question is why the remaining 90 percent of commercial firms do not respond
to contract type. In our view, the most likely explanation is that even when tenants face the
costs of their energy consumption choices, the net benefits of decreasing electricity consumption
or investing in energy efficiency are negative. This is consistent with a growing strand of research
that documents negative realized net benefits from energy efficiency investments (Hassett and
Metcalf (1999), Fowlie et al. (2015)). In this section, we provide evidence for this hypothesis
by performing a coarse cost-benefit analysis for a common energy-saving behavioral change. We
then go on to document other potential explanations for why firms may not mitigate their energy
consumption under a tenant-paid contract.

Let us consider the electricity choices of an office building, the sector that makes up the largest
share of buildings in our sample. Overcooling and overheating are common in office buildings, and
some occupants’ behavioral responses, such as running personal heaters or fans, also contribute
to increasing energy consumption. Derrible and Reeder (2015) suggest that overcooling increases
electricity consumption by 8 percent per year, and Sanchez et al. (2007) estimate portable heaters
consume 329 kWh per year. Using these numbers, for the bottom nine deciles of our sample,
the combination of overcooling and space heating amounts to 4,300 kWh of annual electricity
consumption, or $530 on an annual basis. Since addressing overcooling would likely require hiring
a property manager or engineer to monitor and adjust air conditioner and chiller operation, the
total cost of avoiding overcooling may well exceed the $530 reduction in expenditure.

Other explanations could also account for the lack of a treatment effect across most firms.

90ur data source is the New England Independent System Operator (NE-ISO), www.iso-ne.com.
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One possibility is (potentially rational) inattention leading to unresponsiveness among commercial
firms (Jessoe and Rapson (2015)). Comparing the $677 to $1265 annual bill saving from a tenant-
paid contract to the average commercial unit size in Connecticut, 14,000 square feet, suggests
an average annual bill saving of about 4.8 to 9 cents per square foot. This represents about
0.2 percent of the average annual revenues per square foot in office and retail industries and
highlights that the savings smaller firms forgo likely represent a small share of their annual sales.
After accounting for the time and effort required to accurately assess the energy savings from
different energy efficiency investments, firms may be rationally inattentive to potential energy

savings since the savings are comparatively quite small (Sallee (2014)).

6. Conclusion

We measure the “split incentive” effect of tenancy contract type using a unique empirical setting
and dataset of tenancy contracts and energy use among commercial sector clients. Our empirical
framework compares how temperature shocks impact electricity consumption across firms on
owner- and tenant-paid contracts. Importantly, it helps us to overcome the well-known empirical
challenge of separately identifying the split incentives problem from selection on fixed attributes.

Our approach consists of three steps to probe and address the main identification challenge:
selection on unobservables that affect electricity use along a temperature gradient. We allow for a
heterogeneous temperature response gradient along several dimensions by including interactions
between temperature and building attributes that may be correlated with energy consumption,
testing for selection by taking advantage of a state-level change in metering regulations, and
accounting for any potential remaining correlations between unobservable characteristics and the
treatment using the Oster (2016) identified set approach.

Our results indicate heterogeneous returns to a tenant-paid contract, with a positive and
significant effect of contract type only in the top decile of electricity consuming firms. The results
are consistent with privately optimal decision-making since the bill savings from conservation
behavior are relatively small across most of the consumption distribution. Hence, they are likely
not large enough to justify energy efficiency investments or behavioral changes.

The result implies a strong policy case for encouraging tenant-paid energy contracting among
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large commercial and industrial customers. For the largest decile of electricity consumers, we
find that firms who pay their own utility bills consume about 3 percent less electricity annually
than tenants whose utility bills are bundled into rents, and save between $677 and $1265 on their
annual electricity bills. These reductions lead to a 1.4 percent saving in total electricity consumed
by all firms in our sample, and a 3 percent saving for firms in the top consumption decile. These
savings generate annual external benefits between $102 and $204. The payback period from sub-
metering and switching to a tenant-paid contract is less than one year, and a targeted policy of
sub-metering and tenant-paid contract promotion would likely be a net beneficial addition to the
portfolio of energy conservation and greenhouse gas mitigation strategies utilized by policymakers.

Several features of our findings lead us to have conviction about the potential importance
of commercial split incentives in electricity. The commercial split incentives problem is large
and likely even more important in the rest of the U.S. than in Connecticut, due to the higher
prevalence of leased space and owner-pay contracts. If our sample is representative, then the
public and private benefits both independently provide an efficiency case for facilitating sub-
metering and tenant-pay contracts among top consumers. Moreover, if sub-metering occurs after
the building is constructed, features of the building envelope are predetermined and thus less likely
to be exposed to underinvestment in energy efficiency that may arise from tenant-pay contracts.
Finally, the sheer size of large commercial electricity customers distributes the fixed cost per kWh
conserved due to sub-metering much more efficiently than can occur in the residential case. While
it would of course be beneficial to run a large-scale randomized trial to reduce the possibility of
erroneous conclusions, we view a strong case for policy action or, at the very least, a concerted

effort to resolve uncertainties about the policy case.
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Figure 1: UI Territory

Notes: United Illuminating’s service territory. It offers electricity distribution services to 17 counties in Connecticut,
an area totaling 335 square miles.
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Figure 2: Weather Data Variation
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Notes: Average daily temperature in UI’s service territory between October 2007 and May 2011, at the zip code
level. Despite the relatively small region, there is visible cross-sectional variation in daily temperatures, with
summer temperatures varying between 5 to 10 degrees across zip codes. Temperature variation within a zip code
is also possible, due to differences in billing cycles across firms
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Figure 3: Consumption By Contract Type
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Notes: Each scatter plot presents monthly electricity consumption against average temperature within 1-degree
bins, for the bottom nine decile of firms in panel (a), and the top consumption decile in panel (b). The observations
are color-coded by contract type, in both the bottom nine deciles (panel (a)), and the top consumption decile (panel
(b)). The solid lines are a lowess fit of the same data.



Figure 4: Support of Building Characteristics in Connecticut vs. U.S.
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Notes: The Figure shows the overlapping support of building size, stories and year of construction for Connecticut
and U.S. buildings.



Table 1: Summary statistics and covariate balance in full sample

All Firms
Tenant-Paid Owner-Paid t-Statistic
Mean St. Dev. Mean St. Dev.

kW 273 42.9 335 61.4 0.42
kWh (000s) 7.7 13.8 9.0 17.1 0.31
Bill ($) 627 999 720 1220 0.31
Bill Length 30.3 1.3 304 1.3 0.30
Building S.F. (000s) 57.2 59.7 66.8 93.6 0.43
Year Built 1974 26 1968 33 0.76
Building Stories 2.6 1.6 34 3.1 1.09
Industry 0.12 0.33 0.10 0.31 0.25
Trade, Accommodation 0.15 0.36 0.12 0.33 0.35
Finance, Real Estate, Management 0.47 0.36 0.55 0.50 0.66
Education, Health, Pub. Admin. 0.19 0.36 0.18 0.38 0.11
Entertainment, Recreation, Services 0.07 0.36 0.05 0.21 0.33
North 0.40 0.49 0.36 0.48 0.33
South 0.60 0.49 0.64 048 0.33
City 0.30 0.46 0.31 0.46 0.09
Observations 34,304 6,658

Firms 948 178

Notes: The table shows the mean and standard deviations for the observed covariates, for tenant-paid and owner-
paid contracts, respectively. The last column shows the value of the t-statistic for the null hypothesis of equal
means between the two contract types.
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Table 2: Summary statistics and covariate balance in top consumption decile

Top Decile Firms

Tenant-Paid Owner-Paid t-Statistic

Mean St. Dev. Mean St. Dev.
kW 132.4 71.2 1642 1209 1.11
kWh (000s) 40.6 24.1 44.5 34.1 0.47
Bill ($) 3002 1759 3276 2403 0.47
Bill Length 30.4 1.3 30.4 1.3 0.03
Building S.F. (000s) 86.8 79.7 1449 1464 1.68
Year Built 1978 19 1973 24 0.85
Building Stories 3.0 2.4 6.1 5.1 2.61%
Industry 0.22 0.41 0.18 0.39 0.40
Trade, Accommodation 0.09 0.28 0.04 0.20 0.92
Finance, Real Estate, Management 0.46 0.50 0.77 0.42 2.83%
Education, Health, Pub. Admin. 0.09 0.29 0.00 0.00 2.96%*
Entertainment, Recreation, Services 0.15 0.35 0.00 0.00 4.09*
North 0.39 0.49 0.27 0.44 1.06
South 0.61 0.49 0.73 0.44 1.06
City 0.27 0.45 0.40 0.49 1.07
Observations 3,202 703
Firms 91 19

Notes: The table shows the mean and standard deviations for the observed covariates, for tenant-paid and owner-
paid contracts, respectively. The last column shows the value of the t-statistic for the null hypothesis of equal
means between the two contract types. Asterisks indicate a rejection of the null at the 5 percent level of significance.
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Table 3: Split Incentive Effect By Consumption Decile

Dependent variable: Log Usage Log Bill
(1) (2) (3) (4) (5) (6)
Tenant x CDD -0.00001
(0.00009)
Tenant x CDD (10th Dec.) -0.013** -0.015%** -0.015%* -0.014** -0.012%*
(0.006) (0.006) (0.006) (0.006) (0.005)
Tenant x CDD (9th Dec.) 0.001 0.004 0.005 0.005 0.004
(0.009) (0.010) (0.009) (0.009) (0.009)
Tenant x CDD (8th Dec.) -0.001 0.005 0.005 0.004 0.002
(0.007) (0.007) (0.007) (0.007) (0.005)
Tenant x CDD (7th Dec.) -0.004 -0.001 0.003 0.003 0.001
(0.007) (0.008) (0.007) (0.007) (0.005)
Tenant x CDD (6th Dec.) 0.010 0.014* 0.011 0.012 0.009*
(0.008) (0.007) (0.007) (0.007) (0.005)
Tenant x CDD (5th Dec.) 0.003 0.005 0.005 0.005 0.004
(0.007) (0.008) (0.007) (0.007) (0.005)
Tenant x CDD (4th Dec.) 0.009 0.011 0.012 0.012 0.009
(0.011) (0.011) (0.010) (0.010) (0.006)
Tenant x CDD (3rd Dec.) -0.017 -0.017 -0.012 -0.012 -0.006
(0.014) (0.014) (0.013) (0.013) (0.008)
Tenant x CDD (2nd Dec.) 0.005 0.004 0.006 0.006 0.006
(0.010) (0.010) (0.009) (0.010) (0.005)
Tenant x CDD (1st Dec.) -0.010 -0.009 -0.009 -0.009 -0.002
(0.012) (0.012) (0.011) (0.012) (0.007)
Account & Time F.E.s, Acct. Trend YES YES YES YES YES YES
Characteristics Interactions NO NO YES YES YES YES
Characteristics Interactions w/ Year-Built NO NO NO YES YES YES
Switchers Controls NO NO NO NO YES YES
Observations 40,962 40,962 40,962 40,962 40,962 40,962
Accounts 1,126 1,126 1,126 1,126 1,126 1,126
R-squared (within) 0.067 0.076 0.088 0.093 0.093 0.26

Notes: The dependent variable in columns (1-5) is the natural log of electricity use in a billing month, and in column
(6) it is the natural log of the electricity bill in a billing month. Results are reported from an OLS regression.
Column (1) presents results without decile interactions, and columns (2)-(6) include results across consumption
deciles. Additional controls included in all regressions are cooling degree days, heating degree days, and heating
degree days interacted with contract type. Column (3) further conditions on cooling and heating degree days
interacted with building type and NAICS code dummies. Column (4) adds interactions of quartile of year-built
with cooling and heating degree days. Column (5) also includes switchers dummies interacted with cooling and
heating degree days. Standard errors clustered at the building level are in parentheses, ***p<0.01, ** p<0.05, *

p<0.1.



Table 4: Oster Bounds for Monthly Usage and Bill

Log Usage

Identified Set Estimate

Lower Bound -0.014
Upper Bound -0.007

Log Bill
Identified Set Estimate

Lower Bound -0.012
Upper Bound -0.006

Notes: The Oster bounds present an identified set of treatment effect coefficients (interpreted as savings per average
daily CDD) by accounting for residual omitted variable bias through an equal selection assumption. The omitted
variable bias is assumed to be a function of the treatment coefficient and R-squared values before after the inclusion
of covariates, as well as the maximum theoretically possible R-squared, namely from a regression on consumption
and all possible observable and unobservable controls.
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Table 5: External Benefits and the Value of Energy Savings Per Firm

External Benefits

External + Value of Savings (Billed) External + Value of Savings (Marginal Cost)

Low $§ High $ Low $ High $ Low $ High $
&) 2 3) “ ) (6)
PM, 5 0.38 0.76 677 1266 574 1143
Cco, 101.95 202.91 779 1468 676 1345
Total 102.33 203.67 779 1469 676 1346

Notes: External Benefits measure the annual per-firm reduction in pollution damages from lower electricity con-
sumption. External + Value of Savings (Billed) measures the sum of the external benefits and the value of the bill
savings from contract type, which are the annual bill savings noted in the text ($677-$1487). External + Value of
Savings (Marginal Cost) uses the average hourly locational marginal price in Connecticut over the sample period,

of $59.42, to value the energy savings. The low and high values are derived from the Oster identified set estimates
for electricity savings, discussed in the text.

36



Appendix

A.1 Bill cycles and weather

We assess whether bill cycle is correlated with the temperature response gradient across contract
type by testing for a systematic relationship between bill cycle and weather. In Table Al, we
report the results of a regression of weather on bill cycle. As shown, we find that the sixteen
billing cycles are neither jointly nor individually significant in explaining cooling degree days or
heating degree days.

A.2 Robustness to Alternative Specifications

Our estimated treatment effect is not sensitive to alternative specifications, as shown in Table
A2. Column (1) is the fully controlled specification from column (5) of Table 3, augmented with
stories quartile dummies interacted with cooling and heating degree days. The point estimate
increases and remains statistically significant. In columns (2)-(7) we show that the results are
not sensitive to the functional form of the building characteristic controls. The point estimate
changes very little when the characteristics are included as is or in the form of tertile, quintile or
sextile dummies.



Table Al: Bill Cycle Conditional Independence Assumption

(1 2) 3) 4)
CDD CDD 10th Dec. HDD HDD 10th Dec.
Bill Cycle 2 -0.037 0.306
(0.466) (1.657)
Bill Cycle 3 -0.131 0.114 0.298 -0.605
(0.468) (0.814) (1.674) (2.429)
Bill Cycle 4 0.189 0.433 -0.394 -2.071
(0.434) (0.557) (1.553) (1.663)
Bill Cycle 5 -0.131 -0.044 0.197 -1.172
(0.475) (0.713) (1.703) (2.139)
Bill Cycle 6 -0.156 0.154 0.111 -1.000
(0.527) (0.814) (1.886) (2.429)
Bill Cycle 7 0.050 0.326 0.416 -1.205
(0.454) (0.596) (1.620) (1.806)
Bill Cycle 8 -0.182 0.184 0.490 -0.594
(0.499) (0.620) (1.775) (1.865)
Bill Cycle 9 0.470 -0.052 -0.509 -0.911
(0.501) (0.632) (1.796) (1.936)
Bill Cycle 10 0.621 -0.196 -1.142 -0.966
(0.509) (0.686) (1.833) (2.160)
Bill Cycle 11 -0.028 0.137 0.646 -1.850
(0.487) (0.733) (1.754) (2.275)
Bill Cycle 12 -0.061 -0.168 0.170 -0.906
(0.438) (0.579) (1.572) (1.783)
Bill Cycle 13 0.130 0.006 -0.785 -2.248
(0.484) (0.686) (1.744) (2.183)
Bill Cycle 14 0.024 -0.151 0.781 -0.751
(0.448) (0.586) (1.600) (1.783)
Bill Cycle 15 0.157 0.190 0.354 0.208
(0.569) (0.709) (2.003) (2.128)
Bill Cycle 16 -0.003 0.162 0.466 -1.849
(0.516) (0.679) (1.852) (2.118)
Constant 2.193%** 2.543%** 15.408%** 16.748%**
(0.377) (0.451) (1.358) (1.335)
Observations 2,479 1,051 2,594 1,270
F test for joint significance 0.471 0.218 0.248 0.245

Notes: Results are reported from an OLS regression of CDD or HDD on bill cycle. The unit of
observation is a billing cycle - zip code. Standard erors are reported in parentheses. *** p<0.01;
** p<0.05; * p<0.1



Table A2: Robustness to Alternative Specifications

Dependent variable: Log Usage

M @ (€)) “ ) (6) 0

Tenant x CDD (10th Dec.)  -0.016%*  -0.014%*%* _0.015%%*%  _0.017%%* -0.017%** -0.016*** -0.016%**
(0.007) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005)

Tenant x CDD (9th Dec.) 0.007 0.004 0.001 0.000 0.000 0.001 0.000
(0.008) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010)
Tenant x CDD (8th Dec.) 0.006 -0.001 -0.002 -0.003 -0.002 -0.002 -0.001
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Tenant x CDD (7th Dec.) 0.002 -0.007 -0.008 -0.007 -0.007 -0.007 -0.007
(0.007) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
Tenant x CDD (6th Dec.) 0.011 0.010 0.010 0.010 0.010 0.010 0.010
(0.007) (0.008) (0.008) (0.007) (0.007) (0.007) (0.008)
Tenant x CDD (5th Dec.) 0.006 0.001 -0.000 -0.000 0.000 0.000 0.000
(0.007) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007)
Tenant x CDD (4th Dec.) 0.011 0.009 0.009 0.009 0.009 0.009 0.009
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
Tenant x CDD (3rd Dec.) -0.013 -0.018 -0.019 -0.019 -0.019 -0.019 -0.019
(0.013) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
Tenant x CDD (2nd Dec.) 0.005 0.006 0.005 0.006 0.006 0.005 0.006
(0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Tenant x CDD (1st Dec.) -0.011 -0.007 -0.008 -0.007 -0.008 -0.008 -0.008
(0.011) (0.012) (0.011) (0.011) (0.011) (0.012) (0.012)
Account Fixed Effects YES NO NO NO NO NO NO
Time F.E.s, Acct. Trend YES YES YES YES YES YES YES
Switchers Controls YES YES YES YES YES YES YES
Characteristics Controls YES YES YES YES YES YES YES
Observations 40,962 40,962 40,962 40,962 40,962 40,962 40,962
Accounts 1,126 1,126 1,126 1,126 1,126 1,126 1,126
R-squared (within) 0.095 0.071 0.072 0.072 0.072 0.072 0.072

Notes: The dependent variable in columns (1-5) is the natural log of electricity use in a billing month. Column
(1) augments the specification estimated in column (5) of Table 3 to include a building stories quartile dummies
interacted with cooling and heating degree days. Columns (2)-(7) present specifications without firm fixed effects.
Column (2) includes building type and NAICS code dummy variables, year of construction, number of stories
and building size in square feet. Column (3) replaces the number of stories with dummy variables for each story.
Column (4) includes quartile dummies for year of construction, number of stories, and building size. Columns
(5)-(7) includes the same variables in the form of tercile, quintile and sextile dummies, respectively. Additional
controls included in all regressions are cooling degree days, heating degree days, and heating degree days interacted
with contract type.
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